Cyfroteka.pl

klikaj i czytaj online

Cyfro
Czytomierz
00726 010515 11034275 na godz. na dobę w sumie
Metody i techniki odkrywania wiedzy. Narzędzia CAQDAS w procesie analizy danych jakościowych - ebook/pdf
Metody i techniki odkrywania wiedzy. Narzędzia CAQDAS w procesie analizy danych jakościowych - ebook/pdf
Autor: Liczba stron: 294
Wydawca: Wydawnictwo Uniwersytetu Łódzkiego Język publikacji: polski
ISBN: 978-8-3796-9550-8 Data wydania:
Lektor:
Kategoria: ebooki >> poradniki >> zarządzanie
Porównaj ceny (książka, ebook (-21%), audiobook).
Publikacja przybliża możliwości zastosowania nowych technologii w naukach społecznych i humanistycznych. W swoich tekstach badacze i praktycy prezentują w sposób przekrojowy, a zarazem systematyczny, jak można korzystać z różnych popularnych programów z rodziny CAQDAS podczas prowadzenia badań rozmaitymi metodami i z zastosowaniem wielu narzędzi badawczych. Czytelnik otrzymuje bardzo rzetelną wiedzę opartą na wieloletnim doświadczeniu ekspertów. Książka powinna zaspokoić oczekiwania zarówno niedoświadczonych użytkowników oprogramowania, jak i wytrawnych badaczy, którzy dzięki niej mogą nieco zrewidować swój warsztat badawczy i odnaleźć świeży powiew inspiracji. W doskonały sposób łączy analizy teoretyczne wybranych zagadnień z walorem praktycznym ich zastosowania. Może być traktowana jako swoisty przewodnik po metodach i technikach służących odkrywaniu wiedzy w procesie analizy danych jakościowych. 
Znajdź podobne książki Ostatnio czytane w tej kategorii

Darmowy fragment publikacji:

Jakub  Niedbalski  –  Uniwersytet  Łódzki,  Wydział  Ekonomiczno-­‐Socjologiczny,  Instytut  Socjologii   Katedra  Socjologii  Organizacji  i  Zarządzania,  90-­‐214  Łódź,  ul.  Rewolucji  1905  r.  nr  41/43   e-­‐mail:  jakub.niedbalski@gmail.com   RECENZENT   Marian  Niezgoda   REDAKTOR  WYDAWNICTWA  UŁ   Dorota  Stępień   SKŁAD  I  ŁAMANIE   AGENT  PR   PROJEKT  OKŁADKI   Łukasz  Orzechowski   Zdjęcie  na  okładce:  ©  momius  –  Fotolia.com   Publikacja  dofinansowana  z  funduszy  Rektora  Uniwersytetu  Łódzkiego   oraz  Dziekana  Wydziału  Ekonomiczno-­‐Socjologicznego  UŁ     ©  Copyright  by  Uniwersytet  Łódzki,  Łódź  2014   Wydane  przez  Wydawnictwo  Uniwersytetu  Łódzkiego   Wydanie  I.W.06685.14.0.K   Ark.  wyd.  19,0;  ark.  druk.  18,375   ISBN  978-­‐83-­‐7969-­‐549-­‐2  (wersja  papierowa)   ISBN  978-­‐83-­‐7969-­‐550-­‐8  (wersja  online)   Wydawnictwo  Uniwersytetu  Łódzkiego   90-­‐131  Łódź,  ul.  Lindleya  8   www.wydawnictwo.uni.lodz.pl   e-­‐mail:  ksiegarnia@uni.lodz.pl   tel.  (42)  665  58  63,  faks  (42)  665  58  62   Spis treści Wprowadzenie do komputerowej analizy danych jakościowych (Jakub Niedbalski)  ................ 7 Grzegorz Bryda – CAQDAS, Data Mining i odkrywanie wiedzy w danych jakościowych  .......... 13 Kamil Brzeziński – Wykorzystanie programu komputerowego QDA Miner w analizie jakościowego materiału badawczego na przykładzie pogłębionych wywiadów swobodnych z mieszkańcami łódzkich gated communities  .............................................. Izabela Ślęzak, Jakub Niedbalski – Główne funkcje programu NVivo a procedury metodologii teorii ugruntowanej, czyli jak realizować badanie oparte na MTU, korzystając z oprogramowania CAQDA?  ............................................................................................. 77 41 Jakub Niedbalski – Praktyczne zastosowanie oprogramowania CAQDA w badaniach jakościowych – zarys problematyki z perspektywy projektu badawczego opartego na metodologii teorii ugruntowanej  ................................................................................ 93 Artur Piszek – Qualify – narzędzie rozszerzające platformę Evernote o możliwość analizy jakościowej treści  ............................................................................................................. 115 Jerzy Żurko – O Programie Socjolog 2.0 w badaniach autobiograficznych (na przykładzie badań nad bezdomnością)  ............................................................................................... 125 Krzysztof Tomanek – Analiza sentymentu: historia i rozwój metody w ramach CAQDAS  ........ 155 Krzysztof Tomanek – Jak nauczyć metodę samodzielności? O „uczących się metodach” analizy treści  ................................................................................................................................. 173 Grzegorz Bryda, Krzysztof Tomanek – Od CAQDAS do Text Miningu. Nowe techniki w analizie danych jakościowych  ........................................................................................................ 191 Krzysztof Tomanek, Grzegorz Bryda – Odkrywanie wiedzy w wypowiedziach tekstowych. Metoda budowy słownika klasyfikacyjnego  ..................................................................... 219 Jacek Burski – Relacja badacz–narzędzie – analiza konsekwencji użycia narzędzi komputerowych w analizie danych jakościowych na przykładzie QDA Miner  ................. 249 Kamil Głowacki – Oprogramowanie komputerowe wspierające proces badawczy na etapie przeglądu literatury oraz tworzenia publikacji ................................................................. 263 O Autorach  ................................................................................................................................ 291 Wprowadzenie do komputerowej analizy danych jakościowych Rozwój nowoczesnych technologii komputerowych powoduje, że coraz bardziej widoczny staje się wpływ innowacyjnych narzędzi takich jak specja- listyczne oprogramowanie na proces badawczy zarówno w naukach ścisłych, jak i humanistycznych (Niedbalski 2013b). Na przestrzeni ostatniej dekady mo- żemy obserwować niezwykle dynamiczny rozwój oprogramowania kompu- terowego wspomagającego analizę danych jakościowych, a lista dostępnych programów staje się coraz dłuższa (zob. Lewins, Silver 2004). Pierwsze two- rzone były przez samych badaczy, obecnie za kolejnymi wersjami stoją całe zespoły projektowe składające się z naukowców oraz zaplecza informatyczne- go, a wiele czołowych programów stało się już dobrze rozpoznawalną marką, znaną na całym świecie. Jednocześnie kolejne wersje programów wzbogacane są o nowe funkcje poszerzające możliwości wykonywanej za ich pomocą ana- lizy danych (Niedbalski 2013b). Niniejsza publikacja jest inspirowana aktualnymi trendami w naukach spo- łecznych i humanistycznych, które już od kilkudziesięciu lat są prężnie rozwijane w czołowych ośrodkach naukowych za granicą. W Polsce również mamy do czy- nienia z rosnącym zainteresowaniem zarówno świata akademickiego, jak i pod- miotów rynkowych z możliwościami oprogramowania CAQDAS (komputerowe- go wspomagania analizy danych jakościowych) w projektowaniu i prowadzeniu badań jakościowych. Nieustanie wzrasta liczba badaczy, naukowców, ale także praktyków zaciekawionych prowadzeniem badań jakościowych, poszukujących przy tym narzędzi, które mogłyby wspomóc proces analityczny. Osoby zaintere- sowane metodami ilościowymi mogą czerpać z bogatej literatury prezentującej takie programy komputerowe, jak SPSS czy Statistica. Na rynku wydawniczym nie ma jednak zbyt wielu tego typu opracowań, odnoszących się do programów CAQDAS. W rodzimej literaturze metodologicznej występują jedynie pojedyncze opracowania odnoszące się do tej tematyki (Trutkowski 1999; Bieliński, Iwińska, Kordasiewicz 2007; Niedbalski, Ślęzak 2012; Brosz 2012; Niedbalski 2013a, 2014). Jednocześnie w naszym kraju istnieją badacze wykorzystujący i specjalizujący się w rozmaitych CAQDAS, a nawet tworzący polskie programy do analizy danych jakościowych. 8 Wprowadzenie… Prezentowana książka ma szansę stać się publikacją, która zaprezentuje możliwości i sposób wykorzystania programów CAQDAS w badaniach opartych na metodach jakościowych, uzupełniając w ten sposób literaturę przedmiotu do- stępną na polskim rynku. Publikacja, którą oddajemy w ręce czytelników, jest zbiorem artykułów ba- daczy posiadających przeważnie wieloletnie doświadczenie w stosowaniu nowo- czesnych narzędzi wspomagających proces badawczy, takich jak specjalistyczne oprogramowanie komputerowe. Powstanie niniejszej grupy było podyktowane obserwowanym od dłuższego czasu zapotrzebowaniem środowiska naukowego, w którym pojawia się coraz więcej osób zarówno korzystających z oprogramo- wania komputerowego, jak i zainteresowanych jego wdrożeniem w planowanych oraz realizowanych przez siebie przedsięwzięciach badawczych, ale które jak do- tychczas nie miały okazji do wymiany doświadczeń oraz poszukiwania fachowej wiedzy w tym zakresie. Proponowana pozycja ma za zadanie przybliżyć nowe spoj- rzenie na metodologię badań jakościowych i przyczynić się do rozpropagowania idei stosowania nowych technologii w naukach społecznych i humanistycznych. Książka zawiera teksty przygotowane przez badaczy i praktyków, dla których praca w środowisku oprogramowania komputerowego jest codziennością. Dzięki temu otrzymujemy bardzo rzetelną wiedzę opartą na wieloletnim doświadcze- niu poszczególnych autorów, którzy w danym zakresie reprezentują wiedzę eks- percką. Zbiór ten zawiera i pokazuje w sposób przekrojowy, ale też systematycz- ny, korzystanie z różnych programów w ramach prowadzenia badań opartych na rozmaitych metodach i z wykorzystaniem wielu narzędzi badawczych. W ten sposób zyskujemy szerokie spektrum możliwości wykorzystania obecnie istnie- jących, popularnych programów z rodziny CAQDA, a zarazem możemy przyjrzeć się różnym ich zastosowaniom. Prezentowana książka powinna więc zaspokoić oczekiwania zarówno niedoświadczonych jeszcze użytkowników oprogramowa- nia, którzy pragną zasięgnąć nieco informacji na temat jego zastosowania, jak i wytrawnych badaczy, którzy dzięki niej mogą nieco zrewidować swój warsztat badawczy, a być może odnaleźć świeży powiew inspiracji. Wśród wielu zagadnień poruszanych przez autorów warto zwrócić uwagę na tak istotne kwestie, jak: podejmowanie dyskusji nad zgodnością zasad, na ja- kich funkcjonuje oprogramowanie CAQDA z regułami oraz procedurami meto- dologii badań jakościowej; wskazanie możliwości zastosowania oprogramowa- nia CAQDA w realizacji projektów badawczych opartych na różnych metodach jakościowych i w ramach różnych podejść analitycznych; zaprezentowanie zgodności „architektury oprogramowania” z procedurami wybranych metod badawczych; przedstawienie wpływu nowych technologii na przebieg proce- su badawczego; a także wytyczenie kierunków rozwoju, w jakich powinien po- dążać proces implementowania nowoczesnych rozwiązań technologicznych Wprowadzenie… 9 w proces realizacji projektów badawczych opartych na metodach jakościowych oraz ukazanie przyszłości metod jakościowych w kontekście zastosowania oprogramowania CAQDA. Książkę rozpoczyna niezwykle interesujący artykuł Grzegorza Brydy, w któ- rym wraz z autorem możemy prześledzić proces rozwoju wspomaganej kompute- rowo analizy danych jakościowych (CAQDAS) od tradycyjnej analizy jakościowej (Qualitative Analysis), opartej przede wszystkim na teorii ugruntowanej, poprzez analizę treści (Qualitative Content Analysis), w kierunku wykorzystania w socjolo- gii jakościowej czy szerzej, w naukach społecznych zaawansowanych metod eks- ploracji danych i odkrywania wiedzy (Data Mining, DM and Knowledge Discovery in Datasets, KDD). Celem artykułu jest przybliżenie metodologii Data Mining i od- krywania wiedzy w danych przez badaczy jakościowych w Polsce, a tym samym zachęcenie do eksperymentowania z nowymi podejściami w obszarze CAQDAS. Kamil Brzeziński zapoznaje z kolei czytelników z badaniami dotyczącymi mo- tywów podjęcia decyzji o zamieszkaniu na „osiedlu grodzonym”, dostrzeganych przez ich mieszkańców zalet i wad takich kompleksów, a także wewnętrznych relacji sąsiedzkich. Prezentowane badania stanowią tło dla sposobu i charaktery- styki wykorzystania programu QDA Miner, który posłużył autorowi do przepro- wadzenia analizy danych i realizacji wspomnianego problemu badawczego. Dzięki artykułowi Izabeli Ślęzak i Jakuba Niedbalskiego mamy natomiast wgląd w to, jak poszczególne opcje programu NVivo mogą zostać wykorzystane, aby stanowiły skuteczny środek do wsparcia analizy danych prowadzonej zgodnie z procedurami metodologii teorii ugruntowanej. Autorzy pokazują, w jaki sposób określony program należący do rodziny CAQDA może sprostać wymaganiom ba- dacza stosującego wybraną metodę badawczą. Nie stronią również od uwag nad rozwiązaniami, które zostały zaimplementowane do opisywanego narzędzia, od- nosząc się w ten sposób krytycznie do jego wewnętrznej architektury i niektó- rych funkcji programu. Na przykładzie określonego projektu badawczego Jakub Niedbalski stara się przybliżyć, jak realizować badania zgodnie z procedurami metodologii teorii ugruntowanej, korzystając z dostępnych funkcji trzech bezpłatnych programów komputerowych Audacity, WeftQDA oraz CmapTools. Artykuł ma charakter po- glądowy i edukacyjny, pozwalający zapoznać się z możliwościami narzędzi CAQDA oraz ich faktycznym zastosowaniem w realizacji projektów badawczych opartych na wskazanej metodzie badawczej. Z kolei Artur Piszek opisuje narzędzie Qualify, które dzięki nowatorskiemu zastosowaniu pozwala zwiększyć użyteczność oprogramowania Evernote o moż- liwość wykonywania za jego pomocą jakościowej analizy treści. Autor prezentuje najważniejsze informacje dotyczące wspomnianego narzędzia, zapoznając czytel- nika krok po kroku ze sposobami wykorzystania jego poszczególnych funkcji. 10 Wprowadzenie… Z podobną inicjatywą mamy do czynienia w przypadku artykułu Jerzego Żur- ko, który od kilku lat z powodzeniem stosuje program Socjolog, biorąc jednocze- śnie czynny udział w pracach nad jego udoskonalaniem. Wspomniana aplikacja jest dobrym przykładem efektywnej współpracy badaczy reprezentujących nauki humanistyczne oraz profesjonalnych informatyków, którzy potrafili wspólnymi siłami stworzyć od podstaw ciekawe i co ważne – rodzime oprogramowanie. Krzysztof Tomanek w swoim tekście poświęconym autorskiej koncepcji analizy treści polegającej na klasyfikacji wypowiedzi lub tekstów opartej na me- todologii stosowania algorytmów zapożyczonych z obszaru machine learning (ML) akcentuje natomiast dwie różnice wobec podejścia ML w stosunku do wła- snych koncepcji metodologicznych. Po pierwsze proponuje budowę słowników tematycznych, które składają się ze słów i fraz kluczowych (podobnie jak ML), ale które wzbogacone o reguły semantyczne i pragmatyczne (inaczej niż w ML) identyfikują dodatkowe, specyficzne dla wypowiedzi cechy. Po drugie propo- nuje wyposażenie słowników klasyfikacyjnych w reguły rządzące logiką anali- zowanych wypowiedzi. Ten sam autor – Krzysztof Tomanek – w artykule Jak nauczyć metodę sa­ modzielności? O uczących się metodach analizy treści wprowadza czytelników w niezwykle interesujące zagadnienie zaawansowanych statystycznie syste- mów znajdujących zastosowanie w jakościowych analizach danych tekstowych. Opisuje w nim podstawowe, dostępne w wybranych programach CAQDAS (ze szczególnym uwzględnieniem programu Qualrus), techniki wspierające opracowanie materiałów tekstowych, takie jak automatyczne i półautomatycz- ne metody kodowania. W kolejnym artykule Grzegorz Bryda i Krzysztof Tomanek podejmują re- fleksję metodologiczną nad procesem rozwoju klasycznych analiz jakościowych w obszarze nauk społecznych, a szczególnie w socjologii, która charakteryzuje się przechodzeniem od „stylu” CAQDAS w kierunku Text Miningu. Celem następnego artykułu – napisanego również przez Grzegorza Brydę, Krzysztofa Tomanka – jest prezentacja strategii stosowanych w analizie danych tekstowych. Autorzy pokazują jak budować narzędzia służące do analizy dużych zbiorów danych tekstowych, wskazując przy tym, że w ramach analiz treści sto- sować można metody inspirowane podejściem zgodnym z teorią ugruntowaną, analizą z zastosowaniem reguł leksykalnych, metod statystycznych oraz podej- ściem specyficznym dla logiki falsyfikacjonizmu. Tekst napisany przez Jacka Burskiego odsłania zaś kolejny, aplikacyjny aspekt zastosowania programu komputerowego QDA Miner służącego do wspar- cia analiz danych jakościowych. Główne zadanie, jakie stawia sobie autor tekstu, dotyczy konsekwencji użycia techniki komputerowej do skomplikowanych analiz jakościowych, a także jej ewentualnego wpływu na wyniki procesu badawczego. Wprowadzenie… 11 Jacek Burski stara się w ten sposób wykazać, iż pomimo zastosowania zaawanso- wanych narzędzi komputerowych intuicja badacza oraz jego zdolności analitycz- ne i syntetyczne zawsze powinny odgrywać główną rolę. W ostatnim artykule niniejszej książki Kamil Głowacki prezentuje pakiet na- rzędzi służących organizacji i zarządzaniu wiedzą gromadzoną oraz wytwarzaną przez badacza. Jest to także zestaw narzędzi wspomagających badacza w proce- sie koordynowania całego przedsięwzięcia badawczego. Z całą pewnością wśród opisywanych przez autora programów każdy znajdzie ten, który będzie najlepiej spełniał jego własne wymagania, biorąc pod uwagę rodzaj, przedmiot oraz za- kres prowadzonych przez siebie badań. Wszystkie teksty zawarte w publikacji stanowią istotny wkład w zrozumienie specyfiki oraz istoty rozmaitych kontekstów i uwarunkowań związanych ze sto- sowaniem oprogramowania komputerowego wspomagającego analizę danych jakościowych. Książka ma szansę przyczynić się do lepszego poznania tej dyna- micznie rozwijającej się tematyki oraz może wzbudzić refleksję nad aktualnym stanem wiedzy dotyczącej oprogramowania CAQDA. Bibliografia Jakub Niedbalski Bieliński Jacek, Iwańska Katarzyna, Rosińska-Kordasiewicz Anna (2007), Analiza danych jakościo­ wych przy użyciu programów komputerowych, „ASK. Społeczeństwo. Badania. Metody”, nr 16, s. 89–114. Brosz Maciej (2012), Komputerowe wspomaganie badań jakościowych. Zastosowanie pakietu NVivo w analizie materiałów nieustrukturyzowanych, „Przegląd Socjologii Jakościowej”, t. 8, nr 1, s. 98–125; www.przegladsocjologiijakosciowej.org [dostęp: 20.11.2012]. Lewins Ann, Silver Christina (2004), Choosing CAQDAS Software. CAQDAS Networking Project, University of Surrey, Guildford. Niedbalski Jakub, Ślęzak Izabela (2012), Analiza danych jakościowych przy użyciu programu NVivo a zastosowanie procedur metodologii teorii ugruntowanej, „Przegląd Socjologii Jakościo- wej”, t. 8, nr 1, s. 126–165; www.przegladsocjologiijakosciowej.org [dostęp: 20.11.2013]. Niedbalski Jakub (2013a), Odkrywanie CAQDAS. Wybrane bezpłatne programy komputerowe wspomagające analizę danych jakościowych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź. Niedbalski Jakub (2013b) CAQDAS – oprogramowanie do komputerowego wspomagania anali­ zy danych jakościowych. Historia ewolucja i przyszłość, „Przegląd Socjologiczny”, t. LXII/1, s. 153–166. Niedbalski Jakub (2014), Komputerowe wspomaganie analizy danych jakościowych. Zastosowanie oprogramowania NVivo i Atlas.ti w projektach badawczych opartych na metodologii teorii ugruntowanej, Wydawnictwo Uniwersytetu Łódzkiego, Łódź. Trutkowski Cezary (1999), Analiza treści wspomagana komputerowo. Badanie społecznych repre­ zentacji polityki, „ASK. Społeczeństwo. Badania. Metody”, nr 8, s. 113–133. Grzegorz Bryda Uniwersytet Jagielloński CAQDAS, Data Mining i odkrywanie wiedzy w danych jakościowych Streszczenie. Celem artykułu jest refleksja metodologiczna nad procesem rozwoju wspomaga- nej komputerowo analizy danych jakościowych (CAQDAS) od tradycyjnej analizy jakościowej (Qua- litative Analysis) opartej przede wszystkim na teorii ugruntowanej, poprzez analizę treści (Qualita- tive Content Analysis), w kierunku wykorzystania w socjologii jakościowej czy naukach społecznych zaawansowanych metod eksploracji danych i odkrywania wiedzy (Data Mining, DM and Knowledge Discovery in Datasets, KDD). Rozwój technologii informatycznych w zakresie gromadzenia i przetwa- rzania informacji oraz algorytmów i technik analitycznych doprowadził do sytuacji, w której wyko- rzystywanie ich osiągnięć na gruncie socjologii jakościowej i nauk społecznych staje się naturalnym procesem rozwoju CAQDAS. Obecnie wykorzystywanie CAQDAS w obszarze socjologii jakościowej jest na tyle powszechne, że nie budzi zdziwienia, że coraz więcej badaczy, także w Polsce, sięga po oprogramowanie komputerowe w analizie danych jakościowych. Specyfika CAQDAS uczy swo- istego rygoryzmu metodologicznego, dokładności i precyzji w procesie analizy danych jakościowych, co pozytywnie odbija się na jakości prowadzonych analiz i badań. Jednakże analiza danych jakościo- wych wykorzystująca metodologię Data Mining to novum na gruncie socjologii jakościowej. Wiąże się to nie tylko z rozwojem nowych algorytmów czy technik analitycznych, ale także ze zmianami w podejściu do komputerowej analizy danych jakościowych, wzbogacaniem programów o możli- wości pogłębionej analizy treści i struktury lingwistycznej dokumentów tekstowych. W obszarze CAQDAS towarzyszy temu zjawisku obserwowany od kilku lat zwrot metodologiczny w kierunku pa- radygmatu mixed-methods w naukach społecznych, a w szczególności w badaniach jakościowych. Jego konsekwencją jest implementacja wielowymiarowych technik statystycznej analizy danych, technik eksploracji danych tekstowych (Text Mining), a także algorytmów z dziedziny inteligencji komputerowej czy przetwarzania języka naturalnego w programach do wspomaganej komputero- wo analizy danych jakościowych (QDA Miner, Qualrus czy T-Lab). Zdecydowana większość tych roz- wiązań ma swe korzenie właśnie w dynamicznie rozwijającej się od kilkunastu lat metodologii Data Mining. Jeśli oprogramowanie CAQDAS wykorzystuje się najczęściej do pracy z mniejszymi zbiorami danych jakościowych, to Data Mining pozwala na prowadzenie analiz, w których wielkość zbioru danych jest w zasadzie nieograniczona. Celem tego artykułu jest przybliżenie środowisku badaczy jakościowych w Polsce metodologii Data Mining i odkrywania wiedzy w danych, a tym samym za- chęcenie do eksperymentowania z nowymi podejściami w obszarze CAQDAS. W artykule staram się także ukazać relacje pomiędzy CAQDAS i teorią ugruntowaną a Data Mining i procesem odkrywania wiedzy w danych na gruncie socjologii jakościowej i szerzej – nauk społecznych. Słowa kluczowe: analiza danych jakościowych, teoria ugruntowana, Data Mining, odkrywa- nie wiedzy w danych, CAQDAS, metody mieszane (mixed-methods). 14 Grzegorz Bryda Wstęp. Komputerowa analiza danych jakościowych W ciągu ostatnich kilkunastu lat w naukach humanistycznych i społecznych coraz bardziej odczuwalny jest wpływ nowych technologii informatycznych na sposób prowadzenia badań, proces analizy danych i teoretyzowania. Wpływ ten wiąże się bezpośrednio z ideą szeroko rozumianej digitalizacji nauk humani- stycznych i społecznych określanej jako Digital Humanities, Digital Social Scien- ces. Digital Humanities jest dziedziną nauki, prowadzenia analiz i badań, naucza- nia, która powstała na styku informatyki i dyscyplin humanistycznych. Skupia się na badaniu wpływu elektronicznych form zapisu danych tekstowych na rozwój tych dyscyplin oraz na tym, co te dyscypliny oraz nauki humanistyczne wnoszą do rozwoju wiedzy informatycznej. Za początek digitalizacji nauk humanistycz- nych uznaje się pionierską pracę z końca lat 40. XX w. Index Thomisticus1 wło- skiego jezuity Roberto Brusa. Wsparcie ze strony firmy IBM pozwoliło mu na wy- korzystanie ówczesnych komputerów do archiwizacji oraz analizy lingwistycznej i literackiej dzieł św. Tomasza z Akwinu oraz powiązanych z nim autorów. Idea elektronicznego kodowania tekstów pisanych, zapoczątkowana przez Brusa, roz- wijała się w kierunku stworzenia standardowego schematu kodowania huma- nistycznych tekstów elektronicznych i stałą się podstawą wdrożenia osiągnięć z zakresu informatyki w obszarze humanistyki. W konsekwencji w 1987 r. urucho- miono projekt Text Encoding Initiative, którego celem było opracowanie stan- dardów digitalizacji tekstów humanistycznych. W 1994 r. opublikowano pierw- szą wersję wytycznych w tym zakresie2. Od drugiej połowy lat 90. XX w. zaczęły pojawiać się elektroniczne archiwa danych tekstowych i graficznych, na począt- ku w Stanach Zjednoczonych, później zaś w Europie. Digitalizacja tekstów w na- ukach humanistycznych nie szła w parze z możliwościami komputerowej analizy dużych zbiorów danych tekstowych. Te dopiero pojawiły się wraz z rozwojem al- gorytmów drążenia danych (Data Mining) i większymi zasobami obliczeniowymi współczesnych komputerów. Digitalizacja w polu nauk społecznych, w tym w socjologii, miała odmienny charakter. Zainteresowanie technologiami informatycznymi skupiało się na moż- liwościach wykorzystania komputerów w obszarze analiz danych i badań empi- rycznych3. Udokumentowane zastosowanie programów komputerowych w ana- lizie danych ilościowych w naukach społecznych datuje się na drugą połowę lat 1  Zob. strona projektowa Index Thomisticus, www.corpusthomisticum.org/it/. 2  Zob. strona projektowa The TEI Guidelines for Electronic Text Encoding and Inter Change, www.tei-c.org/Guidelines/. 3  Charakterystykę wzajemnego wpływu i kształtowania się relacji między oprogramowa- niem do wspomaganej komputerowo analizy danych jakościowych a procesem badawczym moż- na znaleźć w artykule Brydy (2014). CAQDAS, Data Mining i odkrywanie wiedzy… 15 60. XX w. (Brent, Anderson 1990; Tesch 1990). W tym czasie powstały funkcjonu- jące do dziś programy do statystycznej analizy danych ilościowych SPSS (obecnie IBM Statistics) czy Statistica. Początkowo były to narzędzia o ograniczonej funk- cjonalności, jednakże wraz z rozwojem technologii informatycznych deweloperzy wzbogacali je o nowe algorytmy i techniki analityczne. Idea wspomaganej kom- puterowo analizy danych jakościowych ma również długą tradycję w naukach społecznych. Pierwsze udokumentowane zastosowanie komputerów w anali- zie danych jakościowych odnosi się do publikacji z 1966 r. The General Inquirer: A Computer Approach to Content Analysis autorstwa Philipa J. Stone’a, Dextera C. Dunphyego, Marshalla S. Smitha i Daniel M. Ogilvie pokazujące możliwości wy- korzystania komputerów do analizy treści, np. danych antropologicznych (etno- graficznych), ale także konieczność nowego spojrzenia na sposób definiowana analizy treści4. Oczywiście powszechność tego typu rozwiązań była ograniczona ze względu na brak łatwego dostępu do komputerów i oprogramowania anali- tycznego, które trzeba było tworzyć na potrzeby konkretnych projektów badaw- czych realizowanych przez humanistów i przedstawicieli nauk społecznych5. Dopiero w latach 80. XX w. na szerszą skalę zaczęły powstawać programy do wspomaganej komputerowo analizy danych jakościowych (CAQDAS, ang. Computer Asssisted Qualitative Data Analysis Software). CAQDAS rozwijano dla komputerów na platformie IBM PC w Stanach Zjednoczonych, Niemczech, Wiel- kiej Brytanii, Danii, Holandii i Australii. Jednakże wraz z pojawieniem się pierw- szych programów – takich jak Text Base Alpha, Ethno, Qualpro, TAP czy The Eth- nograph (Tesch 1990; Drass 1989; Fischer 1994) – wykorzystanie komputerów w analizie danych jakościowych budziło szereg kontrowersji wśród badaczy ja- kościowych. Na przełomie lat 80. i 90. XX w. w wielu publikacjach naukowych w socjologii, dotyczących wspomaganej komputerowo analizy danych, przewi- jała się debata na temat możliwości oraz pozytywnych i negatywnych skutków zastosowania oprogramowania w badaniach jakościowych (Conrad, Reinharz 1984; Richards, Richards 1989; Richards, Richards 1991; Seidel 1991; Kelle 1995). Punktem zwrotnym w rozwoju oprogramowania do analizy danych jakościowych było powołanie do życia, w 1994 r. na University of Surrey, CAQDAS Networking 4  General Inquirer to system analizy danych tekstowych rozwijany od lat 60. XX w. przy wsparciu USA National Science Foundation and Research Grant Councils of Great Britain and Au- stralia. Do połowy 1990 r. rozwijany był na dużych komputerach typu mainframe IBM obsługu- jących język programowania PL/1, następnie przy wsparciu Gallup Organization został przepro- gramowany przez Philipa Stone’a w języku TrueBasic, a później ponownie napisany w języku Java przez Vanja Buvaca. System nie jest rozwijany komercyjnie. 5  Obecnie system General Inquirer umożliwia analizy treści w języku angielskim z wykorzy- staniem słowników „Harvard” i „Lasswell” oraz słowników rozwijanych przez użytkowników. Zob. strona projektu General Inquirer, www.wjh.harvard.edu/~inquirer/homecat.htm; strona projek- towa Laswell Value Dictionary, www.wjh.harvard.edu/~inquirer/lasswell.htm. 16 Grzegorz Bryda Project, którego celem stała się integracja środowiska badaczy jakościowych przez: dostarczanie informacji, organizowanie szkoleń z zakresu wykorzystania programów do komputerowej analizy danych jakościowych, tworzenie platformy dla debaty dotyczącej kwestii analitycznych, metodologicznych i epistemologicz- nych wynikających z korzystania z oprogramowania CAQDAS oraz prowadzenie badań socjologicznych dotyczących ich zastosowań6. W ciągu ostatnich dwóch dekad, wraz z rozwojem technologii informatycz- nych na masową skalę, zaczęto szerzej korzystać z programów CAQDAS w ba- daniach jakościowych wykorzystujących technikę indywidualnych i grupowych wywiadów socjologicznych oraz analizę treści dokumentów tekstowych (Berel- son 1952; Krippendorf 1986; Becker, Gordon, LeBailly 1984; Gerson 1984; Brent 1984; Pfaffenberger 1988). Pierwsze programy CAQDAS były pisane przez bada- czy-entuzjastów, którzy nie tylko sami realizowali badania terenowe czy prowa- dzili analizy, lecz także posiadali umiejętności programowania lub znali kogoś, kto je posiadał. Wielu rozwijało programy niezależnie od siebie, często pozostając nieświadomymi faktu, że inni również pracują nad tego typu narzędziami anali- tycznymi. Programy rozwijano w zgodzie z indywidualnym podejściem badaczy do procesu analizy i dominującą ówcześnie metodologią badań jakościowych. Największy wpływ na rozwój oprogramowania CAQDAS miały metodologia teo- rii ugruntowanej i analizy treści (zob. Berelson 1952; Bong 2002; Glaser, Strauss 2009). Obecnie pierwotne różnice między programami CAQDAS zacierają się ze względu na postępującą ich komercjalizację oraz podobieństwo oferowanych funkcjonalności. Towarzyszy temu implementacja nowych technik i algorytmów analitycznych z zakresu pogłębionej eksploracji danych jakościowych, w tym da- nych tekstowych. Wiąże się to ze zmianami w podejściu do komputerowej analizy danych jakościowych, wzbogacaniem jej o analizę treści i struktury lingwistycz- nej dokumentów tekstowych. W obszarze CAQDAS towarzyszy temu zwrot me- todologiczny w kierunku paradygmatu mixed-methods w naukach społecznych, a w szczególności w badaniach jakościowych (Tashakkori, Teddlie 2003). Jego wyrazem jest proces przechodzenia od tradycyjnej analizy danych jakościowych (Qualitative Analysis), przez Qualitative Content Analysis, w kierunku pogłębionej eksploracji danych jakościowych Text Mining wykorzystującej techniki statystycz- ne i algorytmy z dziedziny inteligencji komputerowej7 czy przetwarzania języka 6  Zob. strona projektowa The CAQDAS Networking Project, www.surrey.ac.uk/sociology/re- search/researchcentres/CAQDAS/about/. 7  Sztuczna inteligencja (Artificial Intelligence, AI) to dziedzina badań naukowych informatyki na styku z neurologią, psychologią i kognitywistyką, obejmująca logikę rozmytą, obliczenia ewo- lucyjne, sieci neuronowe itp. Zajmuje się tworzeniem modeli zachowań inteligentnych oraz pro- gramów komputerowych symulujących te zachowania. Termin wymyślił amerykański informatyk John McCarthy. Inteligencja komputerowa (Computational Intelligence, CI) to dziedzina nauki zaj- CAQDAS, Data Mining i odkrywanie wiedzy… 17 naturalnego8. Text Mining ma swe korzenie w rozwijającej się od kilkunastu lat metodologii Data Mining. Celem tego artykułu jest przybliżenie metodologii Data Mining środowisku badaczy jakościowych w Polsce oraz refleksja nad możliwo- ściami wykorzystania eksploracji danych i odkrywania wiedzy w obszarze socjo- logii jakościowej oraz wspomaganej komputerowo analizy danych jakościowych. Data Mining. Eksploracja i odkrywanie wiedzy w danych Od kilkunastu lat można zaobserwować zarówno gwałtowny wzrost liczby in- formacji gromadzonych w formie elektronicznej, jak i rozwój technologii pozyski- wania, zapisu danych oraz ich magazynowania w postaci dużych baz danych: re- pozytoriów, hurtowni, archiwów statystycznych, sondażowych czy dokumentów tekstowych. Można je spotkać w każdym obszarze życia codziennego, począwszy od baz danych dotyczących transakcji bankowych, informacji z kas fiskalnych, re- jestrów użycia kart kredytowych, zestawień rozmów telefonicznych, przez sta- tystyki urzędowe, archiwa danych statystycznych i sondażowych, aż po rejestry medyczne, biologiczne itp. Zjawisku temu towarzyszy rozwój technologii infor- matycznych w zakresie przetwarzania i statystycznej analizy danych, algorytmów lingwistyki komputerowej czy sztucznej inteligencji. Wiąże się to z rozwojem metodologii w zakresie technik i algorytmów analitycznych służących modelo- waniu procesów lub zjawisk społecznych. Kluczowe znaczenie odgrywa w tym rozwoju eksploracja danych (ang. Data Mining) określana także jako: drążenie danych, pozyskiwanie wiedzy, wydobywanie danych, ekstrakcja danych. Data Mi- ning to podstawowy etap procesu odkrywania wiedzy w bazach danych (ang. Knowledge Discovery in Databases, KDD)9. Logika KDD zawiera się w sekwencji następujących etapów: zrozumienia danych, wyboru danych do analizy, wstęp- nego przetworzenia danych, przekształcenia danych do analizy, przeprowadzenia mująca się rozwiązywaniem problemów, które nie są efektywnie algorytmizowalne za pomocą obliczeń. CI wykorzystuje metody matematyczne z wielu dziedzin, korzysta z inspiracji biologicz- nych, biocybernetycznych, psychologicznych, statystycznych, matematycznych, logicznych, in- formatycznych, inżynierskich i innych, jeśli mogą się one przydać do rozwiązywania efektywnie niealgorytmizowalnych problemów. W skład CI wchodzą: sieci neuronowe, logika rozmyta, algo- rytmy genetyczne i programowanie ewolucyjne, metody uczenia maszynowego, rozpoznawania obiektów (pattern recognition), metody statystyki wielowymiarowej, metody optymalizacji, me- tody modelowania niepewności – probabilistyczne, posybilistyczne itp. 8  Charakterystyka Text Mining została przedstawiona w artykule znajdującym w tej publika- cji (Bryda, Tomanek 2014). 9  Termin ten zrodził się w obszarze badań nad sztuczną inteligencją. Data Mining jest przede wszystkim wykorzystywany w biznesie, stąd ostatnim etapem metodologii KDD jest zazwyczaj implementacja i integracja modeli analitycznych z systemami bazodanowymi. 18 Grzegorz Bryda eksploracji w celu odkrycia struktury wzorców i zależności, konstruowania mo- deli analitycznych, oceny stopnia dopasowania modeli do danych, a następnie oceny i interpretacji wyników pod kątem uzyskanej wiedzy. Nie ma jednoznacz- nej, ogólnie przyjętej definicji eksploracji danych. Większość istniejących definicji zwraca jednak uwagę na trzy rzeczy: analizę dużych zbiorów danych (w szczegól- ności danych zastanych), poszukiwanie struktury zależności w danych i podsumo- wań oraz wizualizacje jako formę reprezentacji wyników. Dynamika KDD w różnych obszarach nauki oraz rozwój zaawansowanych tech- nik i algorytmów drążenia danych doprowadziły do sytuacji, w której idea odkry- wania wiedzy staje się możliwa do zastosowania na gruncie socjologii analitycznej, w tym socjologii jakościowej. Staje się to możliwe ponieważ rozwój oprogramowa- nia do wspomaganej komputerowo analizy danych jakościowych (CAQDAS) idzie w kierunku metod mieszanych, a więc równoczesnego wykorzystywania w proce- sie analizy danych ilościowych i jakościowych10. Są to dane ustrukturyzowane (sta- tystyki urzędowe, dane z badań sondażowych, dane pomiarowe itp.), częściowo ustrukturyzowane zbiory danych tekstowych (dane z Internetu, ze stron WWW, publikacji elektronicznych) oraz dane nieustrukturyzowane (luźne dokumenty, książki, artykuły, zapiski, notatki, transkrypcje wywiadów) czy też inne rodzaje danych z badań jakościowych (np. zdjęcia, rysunki, filmy). Integracja tych danych w procesie analitycznym stanowi bogactwo informacji i źródło wiedzy o życiu spo- łecznym. Wymaga także odpowiednich technik analitycznych, zdolnych nie tylko do ich przetworzenia, wydobycia zawartych informacji, lecz przede wszystkim ujęcia w struktury interpretowalnej wiedzy. Obecne na rynku programy do wspo- maganej komputerowo analizy danych jakościowych pozwalają tylko w pewnym stopniu na tego typu analizy. Istnieje możliwość „inteligentnego uczenia się” wzor- ców kodowania danych (Qualrus)11 czy automatycznego kodowania treści doku- mentów tekstowych w oparciu o model klasyfikacyjny skonstruowany na bazie analizy słownikowej istniejącego zbioru danych tekstowych (QDA Miner)12. Roz- wiązania te wykorzystują techniki i algorytmy analityczne właśnie z obszaru Data i Text Mining, a także przetwarzania języka naturalnego (NLP)13. Zanim przejdę do refleksji nad możliwościami zastosowania Data Mining w procesie eksploracji 10  Doskonałym przykładem są tu metody mieszane (mixed methods). 11  Zob. strona producenta oprogramowania: www.ideaworks.com/download/qualrus/Qual- rusManual.pdf. 12  Zob. strona producenta oprogramowania: http://provalisresearch.com/Documents/QDA- Miner40.pdf. 13  Przetwarzanie języka naturalnego (Natural Language Processing, NLP) to dział informa- tyki, w skład którego wchodzi teoria gramatyk i języków formalnych oraz reprezentacja wiedzy zawartej w tekstach. Analiza języka naturalnego dotyczy przetwarzania komputerowego tekstów zapisanych w języku naturalnym w celu wydobywania z nich informacji, reguł i prawidłowości, wzorców. CAQDAS, Data Mining i odkrywanie wiedzy… 19 danych i odkrywania wiedzy w obszarze wspomaganej komputerowo analizy da- nych jakościowych, chciałbym krótko scharakteryzować proces drążenia danych i stojącą u jego podstaw metodologię drążenia danych CRISP. Czym jest Data Mining? Data Mining, eksploracja, drążenie danych to proces analityczny, którego ce- lem jest odkrywanie wiedzy, czyli uogólnionych reguł i prawidłowości w ustruk- turyzowanych i nieustrukturyzowanych danych w oparciu o metody statystycz- ne, techniki i algorytmy sztucznej inteligencji. Wiedza ta nie wynika wprost z danych. Jest konsekwencją określonej struktury relacji między analizowanymi danymi, wynikiem tego, iż to takie, a nie inne dane znalazły się w bazie. Cel eks- ploracji nie ma ścisłego związku ze sposobem pozyskiwania danych. Może ona dotyczyć zarówno danych zgromadzonych w systemach bazodanowych, jak i da- nych pozyskiwanych w toku badań empirycznych. Najczęściej odnosi się do da- nych zastanych. Nie jest to reguła, ale cecha odróżniająca Data Mining od staty- styki czy badań socjologicznych, w których dane są zbierane, aby odpowiedzieć na określone pytania badawcze. Dlatego drążenie danych często nazywane jest wtórną analizą danych. Data Mining ma związek z wielkością wolumenu danych14, mocą obliczeniową komputera czy wykorzystaniem zaawansowanych technik statystycznych i algorytmów sztucznej inteligencji do znajdowania ukrytych dla człowieka, ze względu na jego ograniczone możliwości czasowe i percepcyjne, związków przyczynowo-skutkowych, prawidłowości czy podsumowań zawartych w danych, które są zrozumiałe i mają moc wyjaśniającą. Zależności te stanowią formę reprezentacji wiedzy zawartej w danych. W procesie eksploracji specyfiku- je się cechy badanego zjawiska tak, aby móc je ująć, w formalne reguły, strukturę relacji, modele15 lub wzorce. Eksploracja i modelowanie danych są więc tworze- niem wyidealizowanej, ale użytecznej repliki realnego świata. W przypadku nauk społecznych modelowanie dotyczy ukazania takiej reprezentacji relacji między 14  Jeśli wolumen jest stosunkowo niewielki, to możemy skorzystać z tradycyjnej, statystycz- nej eksploracji danych lub jeśli mamy do czynienia z danymi jakościowymi z algorytmów anali- tycznych dostępnych w programach CAQDAS. Kiedy jednak liczba danych rośnie, stajemy przed nowymi problemami. Niektóre z nich dotyczą sposobu przechowywania danych, ich jakości, stan- daryzacji zapisu, występowania braków danych itp. Inne odnoszą się do sposobu wyznaczania danych do analizy, badania regularności, dynamiki zjawisk czy procesów społecznych, konstru- owania i walidacji modeli analitycznych, weryfikacji tego, czy nie są przypadkowym odzwiercie- dleniem jakiejś wewnętrznej rzeczywistości zbioru danych. 15  Model jest uproszczoną reprezentacją realnego procesu społecznego. Służy do redukcji złożoności relacji pomiędzy danymi. Model dostarcza odpowiedzi na pytania: jak coś działa, jakie są mechanizmy działania, jakie są prawidłowości, jakie są relacje.
Pobierz darmowy fragment (pdf)

Gdzie kupić całą publikację:

Metody i techniki odkrywania wiedzy. Narzędzia CAQDAS w procesie analizy danych jakościowych
Autor:

Opinie na temat publikacji:


Inne popularne pozycje z tej kategorii:


Czytaj również:


Prowadzisz stronę lub blog? Wstaw link do fragmentu tej książki i współpracuj z Cyfroteką: