Cyfroteka.pl

klikaj i czytaj online

Cyfro
Czytomierz
00066 007112 15351978 na godz. na dobę w sumie
Statystyka opisowa - ebook/pdf
Statystyka opisowa - ebook/pdf
Autor: Liczba stron: 242
Wydawca: C. H. Beck Język publikacji: polski
ISBN: 978-83-255-1607-9 Data wydania:
Lektor:
Kategoria: ebooki >> naukowe i akademickie >> inne
Porównaj ceny (książka, ebook, audiobook).

Podejmowanie prawidłowych decyzji gospodarczych, demograficznych, społecznych itp. wymaga znajomości metod ilościowych, stąd statystyka opisowa jest ważnym przedmiotem, uwzględnionym w programach nauczania wyższych uczelni. Statystyka opisowa zajmuje się problemami programowania badań statystycznych, metodami obserwacji statystycznej, sposobami opracowywania i prezentacji materiału statystycznego oraz sumaryczną charakterystyką właściwości zbioru danych. Uzupełnieniem podręcznika Statystyka opisowa jest Statystyka matematyczna. W tej drugiej książce przedstawiono metody estymacji i weryfikacji hipotez o całej zbiorowości na podstawie wybranej w sposób losowy pewnej jej części.

Oceniana praca pt. „Statystyka opisowa” kwalifikuje się jako podręcznik do przedmiotu o tej samej nazwie, bowiem zawiera wszystkie zagadnienia ujęte w ministerialnych standardach kształcenia dla kierunków ekonomicznych z zakresu statystyki opisowej. Książka napisana jest jasnym, przystępnym i zrozumiałym językiem. Cenną zaletą pracy jest uwzględnienie dużej liczby przykładów wraz z rozwiązaniami, które pozwalają prześledzić tok rozumowania i obliczeń, tak aby student mógł samodzielnie przygotować się do sprawdzianów i egzaminu. Autor podaje w każdym przypadku jasną interpretację merytoryczną (ekonomiczną) uzyskanych wyników, co pozwala na zrozumienie praktycznych aspektów stosowania metod statystycznych w różnego rodzaju analizach.

Prof. dr hab. Anna Malina Katedra Statystyki Uniwersytet Ekonomiczny w Krakowie

Znajdź podobne książki Ostatnio czytane w tej kategorii

Darmowy fragment publikacji:

Statystyka_opisowa 9/30/10 3:23 PM Page 1 Podejmowanie prawid∏owych decyzji gospodarczych, demograficznych, spo∏ecznych itp. wymaga znajomoÊci metod iloÊciowych, stàd statystyka opisowa jest wa˝nym przedmiotem, uwzgl´dnionym w programach nauczania wy˝szych uczelni. Statystyka opisowa zajmuje si´ problemami programowania badaƒ statystycznych, metodami obserwacji statystycznej, sposobami opracowywania i prezentacji materia∏u statystycznego oraz sumarycznà charakterystykà w∏aÊciwoÊci zbioru danych. Uzupe∏nieniem podr´cznika Statystyka opisowa jest Statystyka matematyczna. W tej drugiej ksià˝ce przedstawiono metody estymacji i weryfikacji hipotez o ca∏ej zbiorowoÊci na podstawie wybranej w sposób losowy pewnej jej cz´Êci. Oceniana praca pt. „Statystyka opisowa” kwalifikuje si´ jako podr´cznik do przedmiotu o tej samej nazwie, bowiem zawiera wszystkie zagadnienia uj´te w ministerialnych standardach kszta∏cenia dla kierunków ekonomicznych z zakresu statystyki opisowej. Ksià˝ka napisana jest jasnym, przyst´pnym i zrozumia∏ym j´zykiem. Cennà zaletà pracy jest uwzgl´dnienie du˝ej liczby przyk∏adów wraz z rozwiàzaniami, które pozwalajà przeÊledziç tok rozumowania i obliczeƒ, tak aby student móg∏ samodzielnie przygotowaç si´ do sprawdzianów i egzaminu. Autor podaje w ka˝dym przypadku jasnà interpretacj´ merytorycznà (ekonomicznà) uzyskanych wyników, co pozwala na zrozumienie praktycznych aspektów stosowania metod statystycznych w ró˝nego rodzaju analizach. S S t t a a t t y y s s t t y y k k a a o o p p i i s s o o w w a a M i e c z y s ∏ a w S o b c z y k Statystyka Statystyka opisowa opisowa Prof. dr hab. Anna Malina Katedra Statystyki Uniwersytet Ekonomiczny w Krakowie Mieczys∏aw Sobczyk . Dr Mieczys∏aw Sobczyk jest doÊwiadczonym dydaktykiem, adiunktem w Zak∏adzie Statystyki i Ekonometrii Uniwersytetu Marii Curie-Sk∏odowskiej w Lublinie. www.sklep.beck.pl e-mail: dz.handlowy@beck.pl http://www.beck.pl tel.: (22) 31 12 222 fax: (22) 33 77 601 Cena 49 z∏ Statystyka_opisowa_str 9/20/10 3:07 PM Page 1 Statystyka opisowa Statystyka_opisowa_str 9/20/10 3:07 PM Page 2 Statystyka opisowa Mieczys∏aw Sobczyk WYDAWNICTWO C.H. BECK WARSZAWA 2010 Wydawca: Dorota Ostrowska-Furmanek Redakcja merytoryczna: Beata Kurcz Recenzent: prof. dr hab. Anna Malina Projekt okładki i stron tytułowych: Maryna Wiśniewska Ilustracja na okładce: c(cid:13)MarkEvans/iStockphoto Seria: Metody ilościowe Złożono programem TEX c(cid:13) Wydawnictwo C.H. Beck 2010 Wydawnictwo C.H. Beck Sp. z o.o. ul. Bonifraterska 17, 00-203 Warszawa Skład i łamanie: Wydawnictwo C.H. Beck Druk i oprawa: Poznańskie Zakłady Graficzne ISBN 978-83-255-1607-9 Spis treści . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 11 11 13 15 18 20 21 25 38 39 40 Pytania kontrolne . . Zadania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wstęp . . . . . . . . Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje . . . . . . empirycznych . . . . 2.1. Rodzaje rozkładów jednowymiarowej zmiennej . 2.2. Opisowe parametry struktury zjawisk masowych . . i klasyfikacje . . . . 1.1. Przedmiot statystyki opisowej . . . 1.2. Zbiorowość, jednostka statystyczna i jednostka sprawozdawcza . . . . 1.3. Cecha statystyczna, jej rodzaje i pomiar . . . . . 1.4. Etapy badania statystycznego . . . . . . . . 1.4.1. Przygotowanie (programowanie) badania . . . 1.4.2. Obserwacja statystyczna . . . . . 1.4.3. Opracowanie i prezentacja materiału statystycznego . . . 1.4.4. Opis statystyczny . . . . . . . . . . . . . . . . . . . . . . Rozdział 2. Statystyczny opis struktury jednowymiarowych rozkładów . . . . . . 2.2.1. Miary położenia (przeciętne, średnie) . . . 2.2.2. Miary zmienności (zróżnicowania, rozproszenia, dyspersji) . 2.2.3. Miary asymetrii (skośności) . . . 2.2.4. Miary koncentracji i spłaszczenia (kurtozy) . . . . . . 44 . . 44 . . 48 . . 49 . . 60 . . 67 . . 71 . . 76 . . . 80 . . 81 . . . 82 . . . 97 . . 97 . 3.1. Cecha wielowymiarowa i jej rozkład . . 98 3.2. Funkcyjna, stochastyczna i korelacyjna zależność między zmiennymi . . . 100 . 3.3. Prezentacja dwuwymiarowego rozkładu empirycznego . . 100 . . . 101 . . . . . 102 3.3.1. Szereg dwuwymiarowy . . 3.3.2. Diagram korelacyjny . 3.3.3. Tablica korelacyjna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3. Kompleksowa analiza struktury . . 2.4. Podobieństwo struktur Pytania kontrolne . . . . . . Zadania . . . . . . . . . . . Rozdział 3. Analiza współzależności cech (korelacja i regresja) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Spis treści . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kwadrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 . 104 . 109 . 111 . 117 . 117 . 119 . 120 . 3.6. Liniowy model regresji dwóch zmiennych . 3.4. Opisowe miary współzależności cech mierzalnych . 3.4.1. Współczynnik korelacji liniowej Pearsona . 3.4.2. Wskaźniki (stosunki) korelacyjne Pearsona . 3.4.3. Korelacja cząstkowa i wieloraka . . . . . 3.5. Opisowe miary współzależności cech jakościowych . . . . . . . . . . . . . . . 3.5.1. Współczynnik korelacji rang Spearmana . 3.5.2. Korelacja rang Kendalla . . . . 3.5.3. Mierniki korelacji obliczane z tablic czteropolowych . 3.5.4. Mierniki korelacji wykorzystujące statystykę chi- . 122 . . 128 . 3.6.1. Funkcja regresji – pojęcie i elementy składowe . . 129 3.6.2. Wyznaczanie parametrów strukturalnych liniowej funkcji regresji . 131 3.6.3. Ocena dopasowania liniowej funkcji regresji do danych . . . . . . . . . . . . . . 134 . . 137 . . 143 . . 144 . . 165 . . 165 . 166 4.2.1. Przyrosty absolutne i względne (jednopodstawowe i łańcuchowe) . 167 . 168 4.2.2. Indeksy indywidualne i średnie tempo zmian . . . 171 4.2.3. Przekształcenia szeregów indeksów indywidualnych . . . 173 . 3.7. Prognozowanie na podstawie liniowej funkcji regresji . . Pytania kontrolne . Zadania . . . . . . . . . . . 4.1. Ogólna charakterystyka szeregów dynamicznych . 4.2. Mierniki dynamiki zjawisk jednorodnych . . . . . . . . 4.3.1. Indeksy agregatowe dla wielkości absolutnych (wartości, cen, . . . . . . . . . . Rozdział 4. Metody analizy dynamiki zjawisk . 4.3. Badanie dynamiki zjawisk złożonych . empirycznych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ilości) 4.4.1. Wyodrębnianie tendencji rozwojowej (trendu) 4.4.2. Pomiar wahań sezonowych . . . . 4.4.3. Eliminacja wahań przypadkowych . 4.4. Addytywny i multiplikatywny model wahań w czasie . . . . . 4.3.2. Indeksy agregatowe dla wielkości stosunkowych . . . . . 4.5. Wykorzystanie modelu wahań w czasie do prognozowania . Pytania kontrolne . Zadania . . . . . . . . . . . . Odpowiedzi do zadań . . . . . Rozdział 2 . Rozdział 3 . Rozdział 4 . Bibliografia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 . 180 . 185 . 187 . . 194 . 203 . 206 . 211 . 213 . 231 . 231 . 232 . 234 . 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wstęp Do podejmowania prawidłowych decyzji i analizowania procesów gospodarczych, de- mograficznych, społecznych itp. niezbędna jest znajomość metod ilościowych. Z tego też względu w programach nauczania uczelni wyższych przewidziano zajęcia ze statystyki. Programy te obejmują zazwyczaj statystykę opisową (studia licencjackie) oraz statysty- kę matematyczną (studia magisterskie). Przedmiotem zainteresowań statystyki opisowej są problemy programowania badań statystycznych, metody obserwacji statystycznej, sposoby opracowywania i prezentacji materiału statystycznego oraz syntetyzująca (sumaryczna) charakterystyka – za pomo- cą odpowiednich parametrów – właściwości zbioru danych. Metody statystyki opisowej wykorzystywane są wtedy, gdy obserwacją objęta jest cała zbiorowość (populacja gene- ralna). Mówimy wówczas o badaniach pełnych, wyczerpujących. Statystyka matematyczna (zwana też statystyką indukcyjną) zajmuje się metodami wnioskowania – estymacji i weryfikacji hipotez o całej zbiorowości (populacji general- nej) na podstawie wybranej w sposób losowy pewnej jej części określanej mianem próby losowej. Metody statystyki matematycznej znajdują szerokie zastosowanie w badaniach częściowych (niepełnych, niewyczerpujących). Fundamentalną sprawą w badaniu czę- ściowym jest to, aby próba była reprezentatywna, tzn. jej struktura pod względem badanej właściwości (cechy) była zbliżona do struktury tej cechy w populacji generalnej. Zapewnienie wysokiej reprezentatywności próby jest zagadnieniem dość skomplikowa- nym. Wynika to z faktu, że populacja generalna jest nieznana, a dopiero badanie częścio- we ma dostarczyć informacji o niej. Wykorzystanie metod wnioskowania statystycznego (statystyki matematycznej) wymaga znajomości rachunku prawdopodobieństwa. Zakres przedmiotowy statystyki przedstawiono na rysunku 1. Metody statystyczne dotyczące zarówno opisu, jak i wnioskowania mogą być uży- teczne w liczbowym rozpoznaniu struktury, współzależności oraz dynamiki zjawisk masowych. O ile jednak opis statystyczny odpowiada na pytanie: „jak jest?”, o tyle wnioskowanie statystyczne związane jest z pytaniem: „jak prawdopodobnie może być?”. Tak więc, wnioskowanie statystyczne w obydwu zasadniczych procedurach, tj. estyma- cji i weryfikacji hipotez, odbywa się zawsze w warunkach niepewności. Mówimy, że jest ono wnioskowaniem indukcyjnym o charakterze stochastycznym (opartym na rachunku prawdopodobieństwa). Wzajemne relacje pomiędzy metodami analizy, opisem i wnio- skowaniem statystycznym przedstawiono w tabeli 1. Całość problematyki statystyki jest ujęta w dwóch odrębnych, wzajemnie uzupełnia- jących się pozycjach noszących tytuły: Statystyka opisowa i Statystyka matematyczna. Prezentowane w nich zagadnienia podawane są od podstaw i nie są zbyt skomplikowane 7 Wstęp Rysunek 1. Zakres statystyki Źródło: [Cieciura, Zacharski, 2007, s. 239]. Tabela 1. Podstawowe metody analizy statystycznej Metody analizy Struktury zjawisk Opis statystyczny Miary średnie Miary zmienności Miary asymetrii Miary koncentracji i spłaszczenia (kurtozy) Rachunek korelacji Rachunek regresji Szeregi czasowe bez sezono- wości Szeregi czasowe z sezonowo- ścią Indeksy statystyczne Współzależności zjawisk Dynamiki zjawisk Wnioskowanie statystyczne Estymacja parametrów (punktowa i przedziałowa) Weryfikacja hipotez (parametrycznych i nieparametrycznych) Źródło: opracowanie własne na podstawie: [Luszniewicz, Słaby, 2008, s. 14]. pod względem matematycznym. Cenną zaletą tych pozycji jest zamieszczenie wielu roz- wiązanych przykładów, które ilustrują istotę omawianych procedur statystycznych oraz pokazują możliwości interpretacyjne otrzymanych wyników. Ponadto zawierają one bo- gaty zestaw zadań do samodzielnego rozwiązania. Kontrolę stopnia opanowania wiedzy ułatwiają zamieszczone na końcu podręczników odpowiedzi do wszystkich zadań. Słu- żą temu również pytania kontrolne. W pracach zamieszczono obszerną bibliografię, zawierającą publikacje książkowe z zakresu statystyki. Pozwoli ona na pogłębienie znajomości prezentowanych zagadnień, jak również na poszerzenie wiedzy w zakresie pominiętych z konieczności treści. We współczesnym świecie nabycie umiejętności praktycznego stosowania metod statystycznych jest nieodzowne. Serwisy informacyjne, gazety codzienne, pisma popu- larne zawierają „gąszcz liczb”. Należy umieć je interpretować. W przeciwnym razie nie jesteśmy w stanie trafnie ocenić tych doniesień, jak też wyciągać z nich odpowiednich wniosków. Autor daleki jest od popierania stwierdzeń typu: „statystyka jest prosta i oczy- wista” czy „jest intuicyjnie zrozumiała”. Tak jak każda dziedzina wiedzy, wymaga ona znacznego wysiłku i żmudnej pracy w celu zdobycia określonych umiejętności. Autor żywi nadzieję, że zawarty w pracach zakres przedmiotowy i zrozumiały spo- sób ujęcia rozpatrywanych zagadnień, uczynią je przyjaznymi dla studentów wydziałów ekonomicznych i humanistycznych (socjologów, psychologów, pedagogów, historyków 8 itp.), jak również dla szerokiego grona praktyków prowadzących analizy statystyczne. Tym samym wierzy, że przekonanie o związku „nudy” i „statystyki” okaże się nieuzasad- nione, a wątpliwości w zakresie możliwości zrozumienia świata opisanego za pomocą statystyki – błędne1. Wstęp *** Podręcznik Statystyka opisowa zawiera cztery merytoryczne rozdziały. Pierwszy z nich wprowadza Czytelnika w problematykę badań statystycznych. W szczególności omówiono tu przedmiot zainteresowań statystyki opisowej, podstawowe pojęcia sta- tystyczne (zbiorowość, jednostka statystyczna i sprawozdawcza, cecha statystyczna), rodzaje, sposoby pozyskiwania i formy prezentacji danych statystycznych oraz etapy ba- dania statystycznego. Rozdział drugi poświęcono prezentacji metod statystycznego opisu struktury jed- nowymiarowych rozkładów empirycznych. Obejmują one miary średnie (przeciętne, położenia), zmienności (zróżnicowania, rozproszenia, dyspersji), asymetrii (skośności) oraz koncentracji i spłaszczenia (kurtozy). Miary te pozwalają na wszechstronną, kom- pleksową analizę struktury zjawisk masowych. W rozdziale trzecim zaprezentowano metody analizy rozkładów wielowymiaro- wych, z położeniem nacisku na rozkłady dwuwymiarowe. Obejmują one problematykę badania siły i kierunku związków przyczynowo-skutkowych (korelację) oraz analizę me- chanizmu powiązań między zmiennymi (regresję). W analizie korelacji przedstawiono różne miary określone rodzajem zmiennych (ilościowe, jakościowe), sposobem prezenta- cji danych wyjściowych (szeregi i tablice korelacyjne) oraz kształtem związku (prostoli- niowy, krzywoliniowy). W badaniu mechanizmu powiązań między zmiennymi skupiono uwagę na liniowych funkcjach regresji z jedną zmienna objaśniającą. Rozdział ten zakoń- czono prezentacją wykorzystania funkcji regresji dla celów prognozowania (predykcji). W ostatnim, czwartym rozdziale, omówiono metody analizy dynamiki zjawisk ma- sowych. Podstawą tego rodzaju analizy są szeregi czasowe (dynamiczne, chronologicz- ne). W zakresie analizy dynamiki przedstawiono dekompozycję szeregów czasowych (trend, wahania sezonowe i przypadkowe), jak też zaprezentowano rachunek indeksów statystycznych (indywidualnych i agregatowych wskaźników dynamiki). W treści te- go rozdziału zwrócono również uwagę na proste metody badania zmian w szeregach chronologicznych (przyrosty absolutne, względne, indeksy indywidualne, średnie tem- po zmian). Na ostateczny kształt tej pracy składa się nie tylko trud autora. Słowa wdzięczno- ści kieruję do Recenzentki Pani Profesor Anny Maliny z Uniwersytetu Ekonomicznego w Krakowie za cenne i szczegółowe uwagi, które przyczyniły się do udoskonalenia tre- ści i formy opracowania. Pragnę podziękować także córce Ewelinie oraz Monice Sobolewskiej za pomoc i ciężką pracę przy technicznym redagowaniu tekstu. Autor 1 Jak mawiał jeden ze studentów: „jeśli pozostałby mi tylko jeden dzień życia, spędziłbym go na statystyce – dzięki temu wydałby mi się on znacznie dłuższy”. Por.: [Szwed, 2009, s. 11]. 9 Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje i klasyfikacje 1.1. Przedmiot statystyki opisowej Termin statystyka wywodzi się od łacińskiego słowa status czyli państwo. W pi- śmiennictwie słowo statystyka po raz pierwszy zostało użyte w połowie XVIII w. przez Gottfrieda Achenwalla (1719–1772), profesora uniwersytetu w Marbur- gu, a następnie w Getyndze. Do połowy XIX w. określenie statystyka oznaczało zbiór danych liczbowych dotyczących stanu państwa, a następnie wszelkie groma- dzone informacje opisujące świat zewnętrzny. Duże zbiory danych liczbowych wymagały odpowiedniej analizy. Ujmowano je w postaci zestawień tabelarycz- nych. Autorów tego rodzaju tablic nazywano tabelarystami. Za twórcę kierunku tabelarystycznego uważa się Duńczyka J.P. Anchersena, który swej opubliko- wanej w 1741 r. pracy nadał znamienny tytuł: Descriptio statuum cultiorium in tabulis. Tak więc termin statystyka ma swoje źródło merytoryczne w badaniach państwoznawczych, a metodologiczne – w pracach tabelarystów. Dynamiczny rozwój statystyki jako narzędzia wykorzystywanego do opisu zjawisk gospodarczych (tablice bilansowe, warunki bytu ludności itp.) datuje się od czasów A. Quetleta (1796–1874). W okresie tym statystykę zaczęto traktować jako naukę, czego wyrazem było powołanie w 1834 r. w Anglii Królewskiego Towarzystwa Statystycznego oraz zwołanie w Brukseli I Międzynarodowego Kongresu Statystycznego (1854 r.). Współcześnie termin statystyka ma wiele znaczeń. W mowie potocznej używa się go do określenia zarówno danych, ich opracowań, charakterystyk opisowych, a także całej dyscypliny naukowej. 1. Statystyka rozumiana jest jako zbiór danych liczbowych, przedstawiających kształtowanie się określonych zjawisk i procesów. W tym znaczeniu mówimy np. o statystyce ludności, transportu, rolnictwa itp. 2. Mianem statystyki określa się wszelkie prace związane z gromadzeniem i opra- cowywaniem danych liczbowych. Zasady gromadzenia danych i prowadzenia badań statystycznych reguluje Ustawa o statystyce publicznej z 29 czerwca 1995 r. (Dz.U. nr 88, poz. 439). Całokształt działań związanych ze zbiera- niem informacji statystycznych, ich przechowywaniem, opracowywaniem, 11 Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje i klasyfikacje udostępnianiem i rozpowszechnianiem wyników badań statystycznych ja- ko oficjalnych danych tworzy System Informacyjny Statystyki Publicznej (SISP). Zadania wynikające z funkcjonowania SISP koordynuje utworzony w 1918 r. Główny Urząd Statystyczny (GUS). 3. Pewne charakterystyki opisowe obliczane ze zbiorowości próbnych również nazywa się statystykami. W tym sensie statystyką jest np. średnia arytmetyczna z próby, odchylenie standardowe z próby, współczynnik korelacji liniowej Pearsona z próby. 4. Wreszcie statystykę definiuje się jako dyscyplinę naukową mającą własne, specyficzne metody badawcze. W tym znaczeniu statystykę rozumie się jako naukę o „ilościowych metodach badania prawidłowości występujących w zjawiskach masowych scharakteryzowanych za pomocą liczb” [Kurkiewicz, Stonawski, 2005, s. 12]. Metoda – to sposób postępowania prowadzący do osiągnięcia wyznaczonego celu. Istnieją określone kryteria pozwalające na ocenę, czy dane postępowanie można określić mianem metody naukowej. Wchodzą one w zakres filozofii, a ściślej ontologii (filozofii bytu) oraz epistemologii (filozofii poznania). Celem analiz statystycznych jest wykrycie prawidłowości rządzących badany- mi zjawiskami masowymi. Obserwowane w zjawiskach masowych prawidłowości są efektem oddziaływania dwóch grup przyczyn: głównych (systematycznych) i ubocznych (przypadkowych). Przyczyny główne oddziałują na badane zjawisko w sposób jednokierunkowy, kształtując tzw. składnik systematyczny zjawiska masowego. Dzięki nim ujawnia się charakterystyczna dla danego zjawiska maso- wego prawidłowość. Przyczyny uboczne występują w dużej ilości i działają różnokierunkowo. W obserwowanej zbiorowości wywołują one odchylenia od prawidłowości, które ujawniają się w indywidualnych przypadkach. Rezultatem oddziaływania przyczyn ubocznych jest przypadkowy składnik zjawiska masowego. Skutki działania przyczyn głównych uwidaczniają się tym wyraźniej, im liczniejsza jest poddana badaniu zbiorowość. Mówimy wówczas o działaniu prawa wielkich liczb. Treść tego prawa można ująć następująco: przy dostatecznie dużej liczbie obserwacji dotyczących określonego zjawiska skutki przyczyn ubocznych redukują się, natomiast ujawniają się prawidłowości. Sama masowość nie decyduje o możliwości stosowania w badaniach me- tod statystycznych. Metody te mogą być wykorzystywane jedynie do badania takich zjawisk masowych, które dotyczą zbiorowości składających się z elemen- tów o podobnych – ale nie identycznych – właściwościach. Przykładowo, zbiór jednakowych krzeseł w sali kinowej nie może być przedmiotem badania staty- stycznego. Rezultaty badania tylko jednego krzesła można tutaj odnieść do całego ich zbioru. Statystyczne metody analizy mają uniwersalny charakter i są niemal po- wszechnie wykorzystywane we wszystkich dyscyplinach naukowych (psychologii, socjologii, demografii, politologii, medycynie itp.). Wśród dyscyplin związanych 12 1.2. Zbiorowość, jednostka statystyczna i jednostka sprawozdawcza ze sferą biznesu, metody statystyczne znajdują zastosowanie w marketingu, ubez- pieczeniach, rachunkowości, zarządzaniu itp. Metody te zwielokrotniają bowiem siłę poznawczą danej dyscypliny naukowej, pozwalają na wygodne, ścisłe i jedno- znaczne oddawanie myśli za pomocą liczb. Językiem statystyki można opisać różnorodne zjawiska masowe nieporównanie dokładniej niż werbalnie. Za podstawowe zadanie statystyki uznaje się dostarczanie wiarygodnych infor- macji niezbędnych do podejmowania różnego rodzaju decyzji. Jeśli decyzje te mają być skuteczne i efektywne, to powinny bazować na bogatym, poprawnie zgroma- dzonym i wszechstronnie przeanalizowanym zbiorze informacji. W szczególności, na wyróżnienie zasługują trzy podstawowe funkcje spełniane przez statystykę: – informacyjna – dająca pełny i obiektywny obraz badanych zjawisk; – analityczna – dzięki której możliwe jest określenie czynników kształtujących konkretne procesy i zjawiska; – prognostyczna – pozwalająca na przewidywanie kierunku rozwoju analizo- wanych zjawisk. 1.2. Zbiorowość, jednostka statystyczna i jednostka sprawozdawcza Badanie statystyczne prowadzone jest zawsze na pewnej zbiorowości (osób, rzeczy, zjawisk, faktów itp.). Zbiór dowolnych elementów podobnych – ale nie identycznych – pod względem określonych właściwości i poddanych badaniu statystycznemu nazywamy zbiorowością (populacją generalną). Elementy skła- dowe zbiorowości poddane bezpośredniej obserwacji lub pomiarowi noszą nazwę jednostek statystycznych, jednostek badania lub jednostek obserwacji. Zbio- rowości powinny być ściśle określone pod względem rzeczowym (kto lub co jest przedmiotem badania), przestrzennym (gdzie znajduje się zbiorowość) oraz czasowym (jakiego momentu lub okresu dotyczy badanie). Podkreślić należy, że w tej samej zbiorowości można – w zależności od celu badania – wyróżnić różne jednostki. Przykładowo w zbiorowości osób jednostkami statystycznymi mogą być poszczególne osoby, rodziny lub gospodarstwa domowe. Zbiorowości można wyodrębniać według różnych kryteriów. I tak, ze względu na kryterium czasu wyróżnia się zbiorowości statyczne (np. ludność Polski według stanu na 31 grudnia ubiegłego roku) i dynamiczne (np. samochody zarejestrowane w Polsce w ubiegłym roku). Zbiorowości statyczne tworzą zatem jednostki, które istniały, istnieją lub będą istniały w ściśle określonym momencie. Zbiorowości dynamiczne składają się z jednostek obserwowanych w pewnym przedziale czasu. Według kryterium liczebności, wyróżniamy zbiorowości skończenie i nie- skończenie liczne. Pierwsze z nich składają się z przeliczalnej liczby jednostek (np. studenci UMCS według stanu na 31 grudnia danego roku), drugie natomiast – tworzą elementy o nieprzeliczalnej liczbie (np. zbiorowość organizmów żywych na kuli ziemskiej). 13 Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje i klasyfikacje Wyróżnia się również zbiorowości jednorodne i niejednorodne. Zbiorowości jednorodne tworzą jednostki o identycznym gatunku, typie, rodzaju. Ewentualne różnice występujące między jednostkami mają tutaj wyłącznie charakter ilościo- wy, a nie jakościowy (zbiorowość jednorodną tworzą np. wszystkie dzieci płci męskiej urodzone w danym dniu). Zbiorowości niejednorodne składają się z ja- kościowo odmiennych jednostek (np. wszystkie urodzone w danym dniu dzieci). Zwrócić należy uwagę na fakt, że jednorodność bądź niejednorodność zbiorowo- ści ma względny charakter. Uzależnione jest to od celu i szczegółowości badania statystycznego. Na przykład w zbiorowości: pracownicy produkcyjni przedsię- biorstwa 15 stycznia danego roku, grupa mężczyzn jest jednorodna z punktu widzenia płci, niejednorodna natomiast ze względu na staż pracy. Pojęcie jednostki statystycznej należy odróżniać od określenia jednostka sprawozdawcza. Jednostką sprawozdawczą jest obiekt udzielający informacji o właściwościach jednostek statystycznych tworzących zbiorowość (populację generalną). Jednostką sprawozdawczą jest np. osoba przeprowadzająca wywiad dla potrzeb Powszechnego Spisu Rolnego (w tym przypadku jednostką statystyczną jest gospodarstwo rolne). Różne klasyfikacje zbiorowości statystycznych przedstawiono na rysunku 1.1. Rysunek 1.1. Różne klasyfikacje zbiorowości statystycznych Źródło: [Maksimowicz-Ajchel, 2007, s. 15]. 14 1.3. Cecha statystyczna, jej rodzaje i pomiar 1.3. Cecha statystyczna, jej rodzaje i pomiar Jednostki statystyczne tworzące określoną populacje generalną odznaczają się określonymi własnościami. Własności te nazywamy cechami statystycznymi. Cechy statystyczne można podzielić na stałe (wspólne dla wszystkich jednostek badanej zbiorowości) oraz zmienne, dzięki którym poszczególne jednostki różnią się między sobą. Cechy stałe (rzeczowe, przestrzenne i czasowe) nie podlegają badaniu statystycznemu, a jedynie służą do precyzyjnego zdefiniowania zbioro- wości statystycznej. Analizie statystycznej poddawane są tylko cechy zmienne. Każda z cech zmiennych może występować w różnych odmianach zwanych wariantami. Warianty mogą być określane słownie (np. płeć, zawód, wykształ- cenie) lub też przyjmować różne wartości liczbowe będące wynikiem zliczania (liczba osób w rodzinie, liczba uczestników kursu, wydatki dzienne na żywność itp.), bądź też rezultatem dokonanego pomiaru (np. wzrost w cm, masa w kg). Cechy, których warianty podawane są w sposób opisowy nazywamy cechami nie- mierzalnymi (jakościowymi). Cechy, których warianty są wyrażane za pomocą liczb, określa się mianem cech mierzalnych (ilościowych). Cechy jakościowe, których natężenie określone jest przez przymiotniki (np. ocena wiadomości ucznia: celująca, bardzo dobra, dobra, dostateczna, dopusz- czająca, niedostateczna), nazywane są cechami porządkowymi. Następującym po sobie wariantom takich cech można przyporządkować kolejne liczby (rangi), odpowiadające zmieniającemu się natężeniu cechy. Cechy jakościowe, których warianty są określone w sposób opisowy i nie jest możliwe ustalenie dla nich hierarchii ważności (np. zawody: ekonomiczne, techniczne, humanistyczne) nazy- wane są cechami nominalnymi. Wśród cech ilościowych (mierzalnych) wyróżnia się cechy skokowe (dyskret- ne) i ciągłe. Pierwsze z nich mogą przyjmować określone wartości ze skończonych i przeliczalnych przedziałów liczbowych, ale bez wartości pośrednich (np. licz- ba osób w gospodarstwie domowym, liczba pracowników firmy itp.). Warianty liczbowe tego rodzaju cech przyjmują zazwyczaj wartości liczb całkowitych. Ce- chy ilościowe ciągłe mogą natomiast przyjmować każdą wartość z określonego skończonego przedziału liczbowego (np. wiek, wzrost, waga). Cechy ciągłe są wyrażane za pomocą liczb rzeczywistych. Trzecim rodzajem cechy ilościowej jest cecha quasi (niby) ciągła. W rze- czywistości jest to cecha skokowa, ale ze względu na wielką liczbę wariantów, jaką może przyjmować, w badaniach statystycznych traktuje się ją jako cechę ciągłą. Przykładami takich cech są: płace pracowników, ceny towarów, miesięcz- ny dochód gospodarstw domowych, zysk przedsiębiorstwa itp. W obliczeniach statystycznych cechy mierzalne quasi-ciągłe zaliczane są do ciągłych. Podział cech statystycznych przedstawiono na rysunku 1.2. Warto zauważyć, że podstawą podziału cech statystycznych na mierzalne i niemierzalne jest sposób ich pomiaru. Pomiarem nazywamy przyporządkowanie określonych symboli (liczb, nazw, znaków) własnościom mierzonych obiektów. 15 Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje i klasyfikacje Rysunek 1.2. Podział cech statystycznych Źródło: [Pułaska-Turyna, 2005, s. 13]. Niejednokrotnie tę samą własność można zakwalifikować – w zależności od sposobu jej pomiaru – do cech mierzalnych lub niemierzalnych. Na przykład wiek osób mierzony w latach jest cechą mierzalną. Jeśli natomiast wiek badanych osób będziemy określać jako młody, średni lub podeszły – to będziemy mieli do czynienia z cechą niemierzalną. Typ skali pomiarowej cech może być podstawą ich podziału na cztery grupy: nominalne, porządkowe (rangowe), przedziałowe (interwałowe), oraz stosun- kowe (ilorazowe). Stosownie do wymienionych wyżej rodzajów cech, wyróżnia się cztery skale pomiarowe: nominalną, porządkową, przedziałową i ilorazową. Skala nominalna jest skalą najniższego poziomu. Liczby pełnią tutaj jedynie rolę umownych symboli służących do identyfikacji jednostek statystycznych i ich zaklasyfikowania do wyróżnionych kategorii. Rezultatem pomiaru w tej skali jest więc jedynie stwierdzenie, że n1 jednostek należy do kategorii pierwszej, n2 do kategorii drugiej, . . ., nk jednostek do k-tej kategorii. Na wartościach cech mierzo- nych w skali nominalnej można wykonywać tylko niektóre operacje matematyczne, takie jak: zliczanie, obliczanie częstości występowania, ustalenie klasy najliczniej- szej. Przykładami liczb typu nominalnego są: numery na koszulkach zawodników drużyny piłki nożnej, numery tras autobusów, pokoi hotelowych, grupy krwi itp. Skala porządkowa (rangowa) jest wyższym poziomem pomiaru niż skala no- minalna. Oprócz klasyfikacji umożliwia ona porządkowanie kategorii ze względu na natężenie danej cechy (np. wykształcenie: podstawowe, średnie, licencjackie, wyższe). Skala ta może ustalać porządek słaby lub mocny. W słabym uporząd- kowaniu dopuszczalne jest stwierdzenie „mniejszy lub równy” lub „większy lub równy”. Nie można natomiast określić różnic między elementami ani stwier- dzić, ile razy jeden element jest większy lub mniejszy od innego. W przypadku porządku mocnego: „większy niż” bądź „mniejszy niż” pojawia się asymetria. Przykładowo, jeśli X jest wyższy od Y, to nie może być na odwrót. Na liczbach w skali porządkowej można wykonywać takie same operacje jak dla skali no- 16 1.3. Cecha statystyczna, jej rodzaje i pomiar minalnej oraz dodatkowo – wyznaczać charakterystyki porządkowe i niektóre miary korelacji. Skala porządkowa posiada wszystkie własności skali nominalnej oraz dodatkowo umożliwia porządkowanie. Od skali porządkowej można przejść do nominalnej, ale nie odwrotnie. W skali porządkowej określa się np. gatunki owoców i warzyw (I, II, III), stopnie wojskowe, preferencje konsumentów. Skala przedziałowa (interwałowa) nie posiada prawdziwego punktu zero- wego, tzw. „zera absolutnego”. Punkt ten jest ustalany arbitralnie (umownie). Przykładowo, w skali temperatury Celsjusza zerem jest punkt, w którym zama- rza woda. Niższe temperatury zapisywane są ze znakiem minus, a wyższe – ze znakiem plus. W skali przedziałowej wyrażane są np. lata kalendarzowe, indeksy cen, skala temperatur Fahrenheita. Z uwagi na brak absolutnego punktu zerowego na liczbach w skali przedziałowej nie można wykonywać dzielenia. Wszystkie operacje dopuszczalne na skalach nominalnej i porządkowej są dozwolone na skali przedziałowej, a ponadto można tu obliczać średnie i miary zróżnicowania. Skala przedziałowa pozwala na określenie różnicy między poszczególnymi jed- nostkami. Oznacza to, że można tu nie tylko stwierdzić, że jedna wartość cechy jest mniejsza lub większa od drugiej, ale również określić czy różnica (dystans) między nimi jest taka sama (większa lub mniejsza) od różnicy między dwiema innymi wartościami. Niemożliwe jest natomiast stwierdzenie, ile razy jedna war- tość jest większa lub mniejsza od drugiej. Skala stosunkowa (ilorazowa) ma własności trzech poprzednich skal, a po- nadto posiada naturalny punkt zerowy. Punkt ten oznacza brak danej cechy (fizyczny poziom zerowy). Umożliwia to dokonywanie na liczbach w tej skali wszystkich – łącznie z dzieleniem – operacji matematycznych. W skali stosunko- wej mierzy się odległość, dochody, wielkość sprzedaży, ceny towarów, koszty itp. Charakterystykę skal pomiarowych zawarto w tabeli 1.1. Podział cech na nominalne, porządkowe, przedziałowe i ilorazowe nie jest kon- kurencyjny w stosunku do klasyfikacji na cechy mierzalne i niemierzalne. Pomiar w skali nominalnej i porządkowej odnosi się bowiem do cech niemierzalnych, na- tomiast pomiar w skali przedziałowej i ilorazowej – do cech mierzalnych. Skale: nominalna i porządkowa są skalami słabymi, natomiast interwałowa i ilorazowa – skalami mocnymi. Zgodnie z teorią pomiaru, zmienne ze skali mocniejszej mo- gą być transformowane na słabsze. Wiąże się to jednak z utratą pewnego zasobu informacji. Wzmacnianie skal, tj. przechodzenie od skal słabszych do mocniej- szych, nie jest możliwe. Nie można bowiem z mniejszej ilości informacji uzyskać większego zasobu. Wyróżnione cztery skale pomiarowe: nominalna, porządkowa, przedziałowa i ilorazowa mają kumulatywny charakter. Oznacza to, że charakteryzują się one narastającym stopniem dokładności pomiaru. Każda następna skala jest precyzyjniejsza od poprzedniej: zawiera wszystkie własności poprzedniej oraz dodatkowo nowe. W wielowymiarowej analizie statystycznej użyteczną rolę pełni podział cech na stymulanty, destymulanty oraz nominanty [Hydzik, Sobolewski, 2007, 17 Rozdział 1. Podstawowe pojęcia statystyki opisowej, ich definicje i klasyfikacje Tabela 1.1. Charakterystyka skal pomiarowych Skala pomiaru Własności Nominalna Porządkowa Pozwala jedynie podzielić elementy zbiorowości na rozłączne podzbiorowości (rozróżnić jednostki). Dodatkowo pozwala uporządkować te podzbiorowości (lub jednostki) według intensywności występowania cechy, nie ustalając odległości między nimi. Przedziałowa (interwałowa) Dodatkowo pozwala ustalić różnice (odległości) intensywności występowania cechy między podzbiorowościami (lub jednostkami). Początek skali to tzw. zero względne (umowne). Dodatkowo pozwala ustalić iloraz intensywności występowania cechy między podzbiorowościami (lub jednostkami). Posiada zero bezwzględne. Źródło: [Maksimowicz-Ajchel, 2007, s. 16]. Ilorazowa (stosunkowa) Przykłady Płeć – kobiety, mężczyźni Rodzaj wykształcenia – ekonomiczne, techniczne itd. Ocena produktu – bardzo zła, zła, średnia, dobra, bardzo dobra Wykształcenie – podstawowe, zawodowe, średnie, wyższe Ocena produktu – 1, 2, 3, 4, 5 Temperatura w ◦C Rok urodzenia Godzina rozpoczęcia egzaminu Dochód, cena, zysk, wiek, liczba zleceń, czas dojazdu, wydatki s. 26]. Zmienna jest stymulantą, jeśli wyższe jej wartości kwalifikują daną jednostkę statystyczną jako lepszą z punktu widzenia prowadzonego badania (np. dochody ludności w badaniach poziomu życia). W przypadku, gdy niższe wartości zmiennej stanowią o lepszej pozycji jednostki z punktu widzenia prowadzonych badań – to cecha ta jest destymulantą. Nominanta – to taka cecha, od której każde odchylenie (zarówno in plus, jak i in minus) jest zjawiskiem negatywnym z punktu widzenia prowadzonego badania (np. poziom substancji czynnej leku w organizmie człowieka w przypadku badań farmakologicznych). Wyróżnienie w zbiorze danych stymulant, destymulant i nominant stanowi punkt wyjścia przy liniowym porządkowaniu obiektów (np. województw, firm), czy wyodrębnianiu jednorodnych rejonów. 1.4. Etapy badania statystycznego Badanie statystyczne to „zespół czynności zmierzających do uzyskania za po- mocą metod statystycznych informacji charakteryzujących badaną zbiorowość” [Makać, 1999, s. 20]. Przedmiotem statystyki opisowej są badania pełne (wyczer- pujące, całkowite), w których biorą udział wszystkie jednostki danej zbiorowości statystycznej. Badaniami pełnymi są: spis statystyczny, inwentaryzacja, reje- stracja bieżąca oraz sprawozdawczość statystyczna. Spisem statystycznym nazywamy okresowe lub doraźne, specjalne badanie, obejmujące wszystkie jednostki danej zbiorowości w ściśle określonym czasie 18 1.4. Etapy badania statystycznego i przestrzeni. Jest on przeprowadzany za pomocą specjalnie przygotowanych formularzy. Formularz statystyczny jest odpowiednio przygotowanym zbiorem pytań i rubryk dotyczących badanych cech danej zbiorowości. Do najważniejszych spisów okresowych przeprowadzanych w Polsce należy zaliczyć powszechne spisy ludności, spisy rolne, spisy pogłowia zwierząt gospodarskich itp. Spisy doraźne są przeprowadzane – w zależności od potrzeb – w różnych okresach (np. spisy środków trwałych). Inwentaryzacja jest spisem ujmującym faktyczny stan ilościowy i wartościo- wy majątku określonej jednostki gospodarczej lub administracyjnej. Rejestracja bieżąca polega na systematycznym notowaniu różnych faktów w momencie ich zaistnienia (np. rejestracja urodzeń, zgonów, małżeństw). Sprawozdawczość statystyczna obejmuje informacje statystyczne przekazywane obligatoryjnie na jednolitych formularzach przez osoby fizyczne, podmioty gospodarcze i instytu- cje do władz nadrzędnych lub organów statystycznych (np. zeznania podatkowe) [Wawrzynek, 2007, s. 17]. W przypadku braku możliwości przeprowadzania badania całkowitego (jak również częściowego), stosuje się postępowanie zwane szacunkiem statystycz- nym [Sobczyk, 1982, s. 25]. Polega ono na ustaleniu nieznanych wielkości lub właściwości zbiorowości na podstawie innych zbiorowości pozostających w okre- ślonym związku przyczynowo-skutkowym z interesującą nas nieznaną populacją. Z koniecznością szacunku statystycznego spotykamy się często w statystyce hi- storycznej (np. szacowanie liczby ludności na podstawie tzw. dymów, tj. domów podlegających opodatkowaniu). Szczególną formą szacunku statystycznego jest rachunek ekstrapolacyjny lub interpolacyjny. Ekstrapolacja pozwala na ustalenie nieznanych wartości znajdujących się poza przedziałem wartości znanych. Interpolacja polega na szacowaniu nieznanych wartości badanej cechy na podstawie jej wcześniejszych lub późniejszych realizacji. Każde badanie statystyczne wymaga pewnych koniecznych czynności, których kolejność jest uwarunkowana logicznymi przesłankami (rys. 1.3). Rysunek 1.3. Etapy badania statystycznego Źródło: opracowanie własne. 19
Pobierz darmowy fragment (pdf)

Gdzie kupić całą publikację:

Statystyka opisowa
Autor:

Opinie na temat publikacji:


Inne popularne pozycje z tej kategorii:


Czytaj również:


Prowadzisz stronę lub blog? Wstaw link do fragmentu tej książki i współpracuj z Cyfroteką: