Cyfroteka.pl

klikaj i czytaj online

Cyfro
Czytomierz
00548 008473 10489469 na godz. na dobę w sumie
Weryfikacja hipotez w ocenie ryzyka rynkowego - ebook/pdf
Weryfikacja hipotez w ocenie ryzyka rynkowego - ebook/pdf
Autor: Liczba stron: 180
Wydawca: Wydawnictwo Uniwersytetu Łódzkiego Język publikacji: polski
ISBN: 978-8-3808-8537-0 Data wydania:
Lektor:
Kategoria: ebooki >> poradniki >> ekonomia
Porównaj ceny (książka, ebook (-22%), audiobook).

Publikacja jest wyjątkowym spojrzeniem na teorię pomiaru ryzyka rynkowego, w szczególności za pomocą miar Value-at-Risk i Expected Shortfall, stanowiących fundament aktualnych koncepcji zarządzania ryzykiem. Problematyka podjęta w pracy jest nie tylko aktualna dziś, ale zyskuje na znaczeniu z racji coraz silniejszej zależności od gospodarki światowej, a także niestabilności skutkującej wzrastającym poziomem ryzyka rynkowego, zwłaszcza w okresie trwania kryzysów finansowych. Analizowane miary ryzyka rynkowego są zalecanym standardem pomiaru ryzyka przez Bazylejski Komitet Nadzoru Bankowego. Reguły te są w większości implementowane do prawa Unii Europejskiej i państw członkowskich, co powoduje, że miary zyskują szerokie zastosowanie w codziennej praktyce bankowej, a potrzeba ich analizy, sposobów estymacji i weryfikacji staje się wyzwaniem o dużej doniosłości teoretycznej, jak i praktycznej. Przedstawione wyniki badań, poparte przykładami z różnych obszarów rynku, stanowią istotną rekomendację zarówno dla przedsiębiorstw wdrażających systemy zarządzania ryzykiem, jak i dla krajowych oraz międzynarodowych organów nadzorczych, opracowujących standardy weryfikacji modeli ryzyka w instytucjach finansowych. Książka stanowi zatem doskonały materiał prezentujący w sposób kompleksowy obszar badania modeli ryzyka.

Znajdź podobne książki Ostatnio czytane w tej kategorii

Darmowy fragment publikacji:

Marta Małecka – Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, ul. Rewolucji 1905 r. nr 41, 90-214 Łódź RECENZENT Grażyna Dehnel REDAKTOR INICJUJĄCY Monika Borowczyk KOREKTA TECHNICZNA Elżbieta Rzymkowska SKŁAD I ŁAMANIE Marta Małecka PROJEKT OKŁADKI Stämpfli Polska Sp. z o.o. Projekt został sfinansowany ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji numer DEC-2013/11/N/HS4/03354. © Copyright by Marta Małecka, Łódź 2016 © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016 Wydrukowano z gotowych materiałów dostarczonych do Wydawnictwa UŁ Wydane przez Wydawnictwo Uniwersytetu Łódzkiego Wydanie I W.07800.16.0.M Ark. druk. 11,25 ISBN 978-83-8088-536-3 e-ISBN 978-83-8088-537-0 Wydawnictwo Uniwersytetu Łódzkiego 90-131 Łódź, ul. Lindleya 8 www.wydawnictwo.uni.lodz.pl e-mail: ksiegarnia@uni.lodz.pl tel. (42) 665 58 63 Spis treści Wstęp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rozdział 1 Pojęcie i statystyczna ocena ryzyka rynkowego . . . . . . . . 1.1. Ryzyko rynkowe i jego rodzaje . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1. Wprowadzenie pojęcia ryzyka rynkowego . . . . . . . . . . . . . . . 1.1.2. Rodzaje ryzyka rynkowego . . . . . . . . . . . . . . . . . . . . . . . 1.1.3. Metody kwantyfikacji ryzyka . . . . . . . . . . . . . . . . . . . . . . 1.2. Miara VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1. Wprowadzenie pojęcia VaR . . . . . . . . . . . . . . . . . . . . . . 1.2.2. Kryteria oceny modeli VaR . . . . . . . . . . . . . . . . . . . . . . 1.3. Koherentne miary ryzyka rynkowego . . . . . . . . . . . . . . . . . . . . . 1.3.1. Aksjomatyczna definicja ryzyka . . . . . . . . . . . . . . . . . . . . 1.3.2. Wprowadzenie pojęcia ES i innych miar koherentnych . . . . . . . 1.3.3. Kryteria oceny modelu ES . . . . . . . . . . . . . . . . . . . . . . . Rozdział 2 Testy wartości zagrożonej (VaR) i oczekiwanego niedoboru (ES) . 2.1. Testy VaR oparte na procesach Bernoulliego i Markowa . . . . . . . . . . 2.1.1. Klasyczne testy bezwarunkowego rozkładu wyjątków VaR . . . . . . 2.1.2. Modyfikacje podejścia do testowania bezwarunkowego rozkładu . . wyjątków VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3. Testy warunkowego rozkładu wyjątków VaR . . . . . . . . . . . . . 2.2. Testy oparte na procesie odległości wyjątków VaR . . . . . . . . . . . . . 2.2.1. Testy braku pamięci . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2. Testy parametrów regresji z rozkładem wykładniczym . . . . . . . . 2.3. Testy bazujące na gęstości rozkładów . . . . . . . . . . . . . . . . . . . . . 2.3.1. Testy zgodności . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2. Testy ilorazu wiarygodności 2.3.3. Testy gęstości spektralnej . . . . . . . . . . . . . . . . . . . . . . . 7 13 14 14 16 19 20 20 23 26 26 30 35 39 41 41 43 45 53 53 56 57 57 59 61 6 Spis treści 2.4. Wielowymiarowe testy VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1. Test Ljunga-Boxa dla wielu poziomów VaR . . . . . . . . . . . . . 2.4.2. Propozycja zastosowania wielowymiarowego testu macierzy korelacji 2.5. Testy ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1. Testy parametryczne . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2. Testy nieparametryczne . . . . . . . . . . . . . . . . . . . . . . . . 66 66 70 73 73 79 Rozdział 3 Ocena własności statystycznych testów wartości zagrożonej (VaR) i oczekiwanego niedoboru (ES) . . . . . . . . . . . . . . . . . . . . 85 . 87 3.1. Projektowanie eksperymentów do oceny rozmiaru . . . . . . . . . . . . . . 87 3.1.1. Eksperymenty oparte na procesie Bernoulliego . . . . . . . . . . . . 88 3.1.2. Zastosowanie metody Monte Carlo do uzyskania testu dokładnego . 90 3.2. Projektowanie eksperymentów do oceny mocy . . . . . . . . . . . . . . . . 90 3.2.1. Eksperymenty wykorzystujące proces GARCH . . . . . . . . . . . . 3.2.2. Propozycja eksperymentu opartego na procesie BGAR . . . . . . . . 93 3.2.3. Propozycja eksperymentu opartego na procesie BGMA . . . . . . . 95 95 3.2.4. Propozycja eksperymentu opartego na procesie Markowa . . . . . . 3.3. Wyniki symulacyjnej oceny rozmiaru i mocy testów VaR . . . . . . . . . . 96 3.3.1. Ocena rozmiaru testów VaR . . . . . . . . . . . . . . . . . . . . . . 96 3.3.2. Ocena mocy testów VaR . . . . . . . . . . . . . . . . . . . . . . . . 110 3.3.3. Wybór optymalnych testów VaR . . . . . . . . . . . . . . . . . . . . 127 3.4. Wyniki symulacyjnej oceny rozmiaru i mocy testów ES . . . . . . . . . . 129 3.4.1. Ocena rozmiaru testów ES . . . . . . . . . . . . . . . . . . . . . . . 129 3.4.2. Ocena mocy testów ES . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4.3. Wybór optymalnych testów ES . . . . . . . . . . . . . . . . . . . . 136 . . Rozdział 4 Weryfikacja modeli ryzyka na przykładzie szeregów empirycznych 139 4.1. Opis badania empirycznego . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.1.1. Opisowa analiza szeregów czasowych . . . . . . . . . . . . . . . . . 140 4.1.2. Zastosowane metody wnioskowania statystycznego . . . . . . . . . . 147 4.2. Wyniki badania empirycznego dla rynku finansowego . . . . . . . . . . . . 153 4.2.1. Ocena modeli VaR i ES dla indeksu WIG20 . . . . . . . . . . . . . 153 4.2.2. Ocena modeli VaR i ES dla indeksu S P500 . . . . . . . . . . . . 158 4.3. Wyniki badania empirycznego dla rynku towarowego . . . . . . . . . . . . 163 4.3.1. Ocena modeli VaR i ES dla indeksu Gold Bullion LBM . . . . . . 163 4.3.2. Ocena modeli VaR i ES dla indeksu S P GSCI Wheat . . . . . . . 167 173 Podsumowanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wstęp Rozwój współczesnej teorii ryzyka wiąże się z potrzebą kwantyfikacji i kon- troli ryzyka instytucji w tym sensie, by zapewnić odpowiednie zabezpiecze- nie kapitałowe z tytułu poszczególnych rodzajów ryzyka oraz chronić przed utratą płynności. Z tego względu aktualne badania z zakresu zarządzania ryzykiem rynkowym koncentrują się na miarach zagrożenia, których kon- strukcja ma na celu oszacowanie potencjalnej wielkości straty, związanej ze zmianami cen rynkowych. Dynamiczny rozwój statystycznych metod oceny ryzyka rynkowego, w szczególności metod bazujących na koncepcji pomiaru zagrożenia, nastąpił począwszy od lat dziewięćdziesiątych ubiegłego wieku. Punktem przełomowym było wprowadzenie miary VaR (wartość zagrożona, ang. value-at-risk) przez JP Morgan w 1994 roku [JP Morgan 1994]. W świe- tle praktyki rynkowej, na przestrzeni dwóch ostatnich dekad VaR stała się najpopularniejszą miarą ryzyka rynkowego, stanowiącą filar współczesnej koncepcji pomiaru ryzyka również w szerszym znaczeniu np. kredytowego lub operacyjnego. Modele VaR powszechnie używane są przez międzynaro- dowe instytucje finansowe oraz znajdują umocowanie w zaleceniach opraco- wywanych przez banki centralne oraz instytucje nadzorcze zajmujące się za- rządzaniem rykiem [Basel Committee on Banking Supervision 1996, 2005a, 2005b]. Ze względu na rosnącą popularność, koncepcja VaR stała się impulsem do rozwoju nowych miar ryzyka, opartych na idei pomiaru zagrożenia. Począw- szy od końca ubiegłego stulecia, stworzone zostały podwaliny aksjomatycznej teorii ryzyka i wprowadzona została definicja miary koherentnej. Za główne uzupełnienie VaR uznaje się koherentną miarę ES (oczekiwanego niedoboru, ang. expected shortfall), której celem jest informowanie o oczekiwanym roz- miarze straty w sytuacji przekroczenia VaR. Od 2012 roku ES stanowi pod- stawę systemów zarządzania ryzykiem w świetle zaleceń międzynarodowego nadzoru bankowego [Basel Committee on Banking Supervision 2012-2016]. 8 Wstęp Szybki rozwój metod związanych z estymacją modeli opartych na mierze VaR, powstanie modeli ES oraz ich coraz szersze zastosowanie wywołują po- trzebę tworzenia nowych jak również usystematyzowania i oceny istniejących procedur weryfikacji modeli ryzyka. Różnorodność technik opartych na kon- cepcjach VaR i ES przesądza o konieczności stosowania uniwersalnych metod wnioskowania statystycznego, pozwalających na obiektywną ocenę konku- rencyjnych modeli. Ze względu na brak obserwowalności realizacji VaR i ES ocena modeli ryzyka nie może opierać się typowych metodach, porównujących realizacje zmiennych ex-post z wartościami prognoz dokonywanych ex-ante. Konieczne jest konstruowanie testów statystycznych z wykorzystaniem pro- cesów zawierających informację o nieobserwowalnej zmiennej, np. w oparciu o porównanie prognoz ryzyka i zrealizowanego ciągu wartości stopy zwrotu. W rozwoju literatury poświęconej statystycznym metodom oceny modeli opartych na mierze VaR można wyróżnić trzy nurty badawcze. Historycz- nie najstarsze podejście, oparte na porównywaniu procesu przekroczeń VaR z procesem Bernoulliego, sprawdza hipotezę mówiącą, że udział przekroczeń w próbie powinien korespondować z założonym poziomem tolerancji [Kupiec 1995]. Jako rozwinięcie testu Kupca, zaproponowano metodę badania nieza- leżności przekroczeń VaR, opartą na warunkowym rozkładzie prawdopodo- bieństwa, uwzględniającą systematyczny napływ nowych informacji w kolej- nych okresach [Christoffersen 1998]. Rozszerzeniem tego nurtu badań były testy posiadające zdolność wykrywania bardziej złożonych form zależności niż autokorelacja pierwszego rzędu. W dynamicznym teście kwantylowym, do oceny autokorelacji między wyjątkami VaR, zastosowano liniowy model autoregresji [Engle i Manganelli 2004]. W celu sprawdzania procesu wyjątków VaR pod kątem autokorelacji dowolnego rzędu, zaproponowano wykorzysta- nie klasycznych testów opartych na statystyce Persona [Wang 2010], współ- czynnikach autokorelacji różnych rzędów [Berkowitz, Christoffersen i Pelle- tier 2011] oraz innowacyjnych w naukach ekonomicznych testów opartych na funkcji gęstości spektralnej [Berkowitz, Christoffersen i Pelletier 2011]. Inny kierunek badań nad weryfikacją modeli VaR obejmuje tzw. testy odległości między przekroczeniami. Koncepcja wykorzystania procesu odle- głości wywodzi się z testu TUFF (ang. time-until-first-failure), w którym odwrotność czasu do pierwszego wyjątku VaR wykorzystana została jako oszacowanie prawdopodobieństwa sukcesu w procesie Bernoulliego [Kupiec 1995]. W uogólnionej wersji testu zaproponowano wykorzystanie wszyst- kich dostępnych odległości między wyjątkami [Haas 2001]. Transformacja procesu wyjątków w proces odległości umożliwiła badanie zależności między kolejnymi przekroczeniami VaR z wykorzystaniem własności rozkładów geo- Wstęp 9 metrycznego i wykładniczego. W ramach tego nurtu badań zaproponowano podejście regresyjne ze składnikiem losowym o rozkładzie wykładniczym [En- gle i Russel 1998] oraz test restrykcji parametru rodziny rozkładów, obejmu- jących rozkład wykładniczy [Christoffrsen i Pelletier 2004]. Trzecia grupa testów VaR wiąże się z badaniem zgodności funkcji gę- stości stopy zwrotu. W przeciwieństwie do testów weryfikujących modele VaR dla jednego poziomu tolerancji, przyjęto założenie, że empiryczne per- centyle odpowiadające prognozom VaR na wszystkich poziomach tolerancji powinny być niezależne i równomiernie rozłożone, co umożliwiło wykorzy- stanie większej ilości informacji z próby [Crnkovic i Drachman 1995, 1996]. W późniejszej literaturze opracowano uzupełnienie formalnej procedury te- stowania zgodności rozkładów za pomocą analizy graficznej [Diebold, Gun- ther i Tay 1998]. Podejmując problem dużego rozmiaru próby, wymaganego do przeprowadzenia nieparametrycznych procedur testowania zgodności, za- proponowano transformację empirycznego szeregu czasowego, pozwalającą na skonstruowanie testu parametrycznego [Berkowitz 2001]. W odpowiedzi na zarzut jednakowego traktowania percentyli ze środka rozkładu jak i ogonów, powstały modyfikacje testów zgodności, pozwalające na wybór obszaru funk- cji gęstości. Zaproponowano wielowymiarowe rozwinięcie testu niezależności VaR, oparte na współczynnikach autokorelacji, które umożliwiło jednoczesne testowanie modelu VaR dla wielu, dowolnie ustalonych poziomów tolerancji [Hurlin i Tokpavi 2007]. W związku z opracowaniem aksjomatycznej definicji ryzyka [Artzner et al. 1999] oraz wprowadzeniem koherentnej miary ES [Acerbi, Nordio i Sir- tori 2001], powstały propozycje procedur, weryfikujących modele oparte na miarach koherentnych. Zaproponowano podejście oparte na tzw. resztach z procesu przekroczeń w połączeniu z wykorzystaniem metod bootstrapowych [McNeil i Frey 2000]. Poprzez zastosowanie uciętego rozkładu normalnego, wprowadzono test ES skonstruowany na zasadzie badania rozbieżności mię- dzy ogonami rozkładów [Berkowitz 2001]. Omijając problem nieznajomości parametrycznej postaci ogona stopy zwrotu, zaproponowano test ES, wy- korzystujący technikę punktu siodłowego, w którym przybliżone p-wartości wyznaczane są w oparciu o rozwinięcie funkcji generującej momenty w sze- reg Taylora [Wong 2008]. W ślad za regresyjnymi testami VaR, opracowano statystykę testową dla modelu ES, opartą na badaniu istotności regresji linio- wej [Christoffersen 2012]. Jednak ze względu na brak znajomości rozkładów statystyk opartych na skrajnych obserwacjach testowanie ES wciąż pozostaje tematem dyskusyjnym [np. Carver 2013, Carver 2014, Hull i White 2014]. 10 Wstęp Z tego względu, mimo powszechnej akceptacji tej miary, procedury weryfika- cji ES nie zostały włączone do zaleceń nadzoru bankowego w ramach Basel III [Basel Committee on Banking Supervision 2016]. Celem pracy było porównanie własności statystycznych testów stosowa- nych do oceny modeli ryzyka rynkowego oraz przedstawienie propozycji no- wych lub zmodyfikowanych testów. Zgodnie ze współczesną teorią pomiaru ryzyka badanie koncentrowało się na miarach zagrożenia VaR i ES. Punktem wyjścia do oceny własności statystycznych testów było sformułowanie uza- sadnionych ekonomicznie kryteriów oceny modelu ryzyka. Określone zostały postulaty decydujące o uznaniu model za dobry. Kryteria oceny modelu prze- łożono następnie na język możliwych do testowania hipotez statystycznych. Analizę porównawczą poprzedzono prezentacją aktualnych badań teoretycz- nych związanych z określeniem miary ryzyka oraz kompleksowym przeglądem procedur testowych VaR i ES. Wskazano modyfikacje, dzięki którym można uzyskać większą dokładność lub poprawę mocy oraz przedstawiono nowe pro- pozycje testowania modeli ryzyka. Porównanie teoretycznych własności te- stów zostało uzupełnione analizą porównawczą wyników badania empirycz- nego, dotyczącego indeksów rynków kapitałowych i towarowych. Uwzględnienie aktualnych potrzeb rynkowych oraz najnowszych zaleceń międzynarodowego nadzoru bankowego wymaga testowania V aR na dwóch, niskich poziomach tolerancji. W pracy zaproponowano test, którego prze- wagą w stosunku do standardowych procedur jest określoność – zatem możli- wość bezpośredniego stosowania – w przypadku szeregu, w którym nie zaob- serwowano żadnego przekroczenia VaR. Ma to praktyczne znaczenie przy te- stowaniu V aR przy skrajnych poziomach tolerancji, zalecanych obecnie przez Komitet Bazylejski. Ponadto analizę testów VaR uzupełniono propozycją te- stu wielowymiarowego, co pozwoliło na jednoczesne testowanie modelu dla wielu poziomów tolerancji z zachowaniem pełnej kontroli błędu pierwszego rodzaju. Dzięki wielowymiarowemu podejściu wykorzystano większą ilość informacji z próby oraz zapewniono elastyczność w zarządzaniu ryzykiem, polegającą na możliwości dostosowania testowanego obszaru rozkładu do po- trzeb analizy. W porównaniu z weryfikacją modeli V aR, testowanie modeli ES jest za- daniem bardziej wymagającym z punktu widzenia teorii statystyki, ze względu na nieznajomość odpowiednich rozkładów statystyk testowych z próby. W tym kontekście przedstawiono możliwość uzupełnienia testów korzystających z roz- kładów asymptotycznych testem bootstrapowym oraz testem, w którym przy- bliżone p-wartości wyznaczane są w oparciu o rozwinięcie funkcji generującej momenty w szereg Taylora. Zaproponowano przeprowadzenie standaryza- Wstęp 11 cji zmiennej objaśnianej w teście regresyjnym ES, co umożliwiło uzyskanie przybliżonej stacjonarności składnika losowego. Kluczową częścią pracy było przeprowadzenie oceny i porównania roz- ważanych testów pod kątem rozmiaru i mocy. Główne problemy metodo- logiczne wiązały się z nieznajomością dokładnych rozkładów statystyk te- stowych oraz projektowaniem odpowiednich eksperymentów symulacyjnych. Przy ocenie mocy, ze względu na brak analitycznej postaci rozkładu statystyk testowych dla prób skończonych, wykorzystano technikę zrandomizowanego testu Monte Carlo, gwarantującą zachowanie założonego rozmiaru. Dzięki temu osiągnięto porównywalność ocen mocy rozważanych testów. W obszer- nym badaniu symulacyjnym, poza typowymi eksperymentami opartymi na procesie GARCH, zaproponowano wykorzystanie różnych schematów gene- rowania danych cechujących się określoną strukturą autokorelacji. Propozy- cje eksperymentów zostały dobrane w taki sposób by reprezentowały zjawisko gromadzenia wariancji, uznawane za główny problem związany z kontrolą ry- zyka rynkowego. W tym celu wykorzystano procesy BGAR, BGMA i proces Markowa. Praca stanowi zatem rozwinięcie dotychczasowych analiz mocy te- stów VaR i ES, obejmujące większą klasę procesów ekonomicznych niż wcze- śniejsze badania, odnoszące się głównie do danych finansowych. W wyniku analizy rozmiaru i mocy, wyłoniono grupy testów gwarantujące najwyższy stopień kontroli nad błędem pierwszego rodzaju oraz cechujące się wyższą niż w innych grupach skutecznością wykrywania autokorelacji prze- kroczeń VaR oraz błędnych modeli ES. Wnioski dotyczące oceny proponowa- nych testów statystycznych zostały wykorzystane następnie w części empi- rycznej, stanowiącej czwarty rozdział pracy. Wykorzystując cztery rzeczywi- ste szeregi czasowe, pochodzące z rynku finansowego i towarowego, przedsta- wiono przykład zastosowania wybranych procedur testowych do oceny kon- kurencyjnych modeli ryzyka. Praca składa się z czterech rozdziałów. Pierwszy rozdział poświęcony został wprowadzeniu pojęć wykorzystywanych w dalszej części pracy, omó- wieniu aksjomatycznej definicji ryzyka oraz sformułowaniu ekonomiczne uza- sadnionych kryteriów oceny modeli ryzyka rynkowego. W drugim rozdziale zebrano dotychczasowe wnioski dotyczące metod weryfikacji hipotez doty- czących modeli VaR i ES, wskazano możliwe modyfikacje oraz uzupełniono o nowe propozycje. Rozdział trzeci poświęcony został analizie porównaw- czej rozmiaru i mocy rozważanych testów statystycznych. Czwarty rozdział pracy objął badanie empiryczne, wykorzystujące wnioski z wcześniejszych jej części oraz stanowiące ilustrację zastosowania omówionych wcześniej metod wnioskowania statystycznego. Rozdział 1 Pojęcie i statystyczna ocena ryzyka rynkowego Metody związane z oceną ryzyka rynkowego zajmują obszerne miejsce w lite- raturze z zakresu ekonomii. Szeroka dyskusja odnosząca się do jego pomiaru oraz kontroli wywołana została przez zmiany światowej gospodarki, które, począwszy od lat 70-tych XX wieku, spowodowały skokowy wzrost zmien- ności cen na rynku walutowym, kapitałowym i towarowym. Wzrost ryzyka rynkowego spowodował, że wcześniej wykorzystywane metody jego analizy stały się niewystarczające. Zrodziło to potrzebę opracowania całych syste- mów analizy i zarządzania ryzykiem, a co za tym idzie również odpowiednich miar, które pozwalałyby na ocenę ryzyka pozycji zajmowanych w różnych instrumentach finansowych a nawet różnych rodzajów ryzyka. Od pierw- szej połowy lat 90-tych, za podstawową miarę ryzyka rynkowego uznawana jest miara VaR, definiowana jako kwantyl rozkładu straty lub stopy zwrotu. W ślad za rozwojem aksjomatycznej teorii ryzyka na przełomie XX i XXI wieku, powstały nowe propozycje miar, nazwanych miarami koherentnymi. Za główne uzupełnienie miary VaR uznaje się miarę koherentną ES, infor- mującą o oczekiwanym rozmiarze straty w sytuacji ekstremalnych wahań na rynku. W niniejszym rozdziale wprowadzono pojęcie ryzyka rynkowego, przed- stawiono jego rodzaje oraz przytoczono podstawowe fakty dotyczące ewolucji tego pojęcia. W dalszej części rozdziału zaprezentowano definicje miar VaR, ES oraz innych miar powstałych na gruncie aksjomatycznej teorii ryzyka. Wprowadzono proces wyjątków VaR, stanowiący podstawę oceny modeli ry- 14 1. Pojęcie i statystyczna ocena ryzyka rynkowego zyka. Zagadnienia związane z przedstawieniem powyższych definicji zakoń- czono sformułowaniem ekonomicznie uzasadnionych kryteriów oceny modeli VaR i ES. Kryteria te przełożono na język hipotez statystycznych, co stano- wiło punkt wyjścia do rozważań związanych z testowaniem modeli ryzyka, zawartych w kolejnych rozdziałach pracy. 1.1. Ryzyko rynkowe i jego rodzaje 1.1.1. Wprowadzenie pojęcia ryzyka rynkowego Ryzyko rynkowe określa się w literaturze jako ryzyko wynikające ze zmian cen rynkowych, przy czym cena rynkowa rozumiana jest jako jedna z czte- rech kategorii: cena towaru, stopa procentowa, kurs walutowy lub kurs akcji. Wzrost zainteresowania ryzykiem rynkowym w naukach ekonomicznych na- stąpił w latach 70-tych ubiegłego wieku, wraz z szokowymi zmianami ówcze- snej gospodarki jak m.in. krach systemu z Bretton Woods, pierwszy kryzys naftowy oraz deregulacja stóp procentowych w Stanach Zjednoczonych i in- nych krajach. Ustalone w 1944 roku w Bretton Woods zasady określały sposób funkcjo- nowania międzynarodowego systemu walutowego do 1971 roku. System ten był oparty na obowiązku utrzymywania przez państwa stałych kursów wa- lutowych, które posiadały parytet określony w dolarach amerykańskich lub złocie. Zawieszenie w 1971 roku przez Rezerwę Federalną wymienialności do- larów na złoto spowodowało destrukcję zasad z Bretton Woods. Stałe kursy walutowe zostały zastąpione systemem kursów płynnych, co doprowadziło do gwałtownego wzrostu ryzyka walutowego. Drugim znaczącym czynnikiem wzrostu ryzyka rynkowego na rynku świa- towym była rezygnacja przez Stany Zjednoczone w latach 70-tych ubiegłego stulecia z odgórnego limitowania wysokości oprocentowania oferowanego przez banki, ze względu na niekorzystny wpływ takiej regulacji na konkurencyjność sektora bankowego. Dało to początek konkurencji cenowej między bankami oraz znacznym wahaniom stopy procentowej, uzależnionym od zmian stopy dyskontowej oferowanej przez Rezerwę Federalną. Efektem był wzrost ryzyka związanego ze stopą procentową. Kryzys naftowy roku 1973 był kolejnym czynnikiem wzrostu ryzyka ryn- kowego. Konflikty na Bliskim Wschodzie doprowadziły do zakazu eksportu ropy naftowej przez kraje OPEC do Stanów Zjednoczonych oraz do cztero- krotnego wzrostu cen ropy naftowej w ciągu kilku miesięcy. Konsekwencją 1.1. Ryzyko rynkowe i jego rodzaje 15 tych wydarzeń, jak również drugiego kryzysu naftowego z lat 1978-80, były duże wahania cen na rynkach towarowych. Rezultatem zmian na rynku światowym, które doprowadziły do nasile- nia ryzyka rynkowego, był trend do zaostrzania wymogów nadzoru banko- wego. Ewolucja ryzyka rynkowego była związana z przemianami w sektorze bankowym, gdzie ostrzejsze wymogi dotyczące proporcji kapitałów własnych do obcych wymusiły ograniczenie akcji depozytowo-kredytowej. Zrodziło to większe oczekiwania dotyczące zysku przy tej samej skali prowadzonej dzia- łalności. Efektem zmian w światowym systemie gospodarczo-finansowym było przekształcenie głównego profilu działalności bankowej z działalności kredytowej w kierunku działalności handlowej, polegającej na nabywaniu in- strumentów finansowych w celu osiągnięcia zysków spowodowanych zmianami cen tych instrumentów. Zmienność warunków gospodarowania, będąca skutkiem przemian lat 70-tych, stanowiła bodziec dla rynku finansowego do rozwijania oferty pro- duktowej nakierowanej na hedging bądź spekulację na ryzyku rynkowym. Dalsza ewolucja ryzyka rynkowego związana była z rozwojem rynków in- strumentów pochodnych. Rozwój oferty instrumentów finansowych, których pierwotnym celem było ograniczanie ryzyka, umożliwił podejmowanie ryzyka w celach spekulacyjnych. Definicje ryzyka rynkowego występujące w literaturze w sposób jedno- znaczny określają jego źródło jako zmiany cen rynkowych, natomiast nie za- wsze są zgodne co do zakresu pojęciowego tej kategorii. Definicja Komitetu Bazylejskiego1 mówi, że ryzyko rynkowe jest to „ryzyko strat na pozycjach bilansowych i pozabilansowych wynikających ze zmian cen rynkowych” [Ba- sel Committee on Banking Supervision 1996, 2005a, 2005b]. Według innej klasyfikacji rodzajów ryzyka, występującej w literaturze, określane jest jako „ryzyko straty w wyniku zmiany wartości aktywów będących przedmiotem obrotu i znajdujących się w posiadaniu przedsiębiorstwa” [Tarczyński i Moj- siewicz 2001, s. 20]. W terminologii bankowej „ryzyko ceny jest ryzykiem wystąpienia niekorzystnych zmian ceny rynkowej w czasie, gdy bank zajmuje spekulacyjną lub związaną z obsługą klienta pozycję netto w towarach, sto- pach procentowych czy też zmienności implikowanej w opcjach” [Riehl 2001, s. 42]. Pomiędzy pierwszą a drugą definicją występuje różnica dotycząca przed- miotu, który narażony jest na ryzyko rynkowe, ujmowanego jako pozycje 1 Międzynarodowy organ działający przy Banku Rozliczeń Międzynarodowych, zaj- mujący się opracowywaniem standardów nadzoru bankowego.
Pobierz darmowy fragment (pdf)

Gdzie kupić całą publikację:

Weryfikacja hipotez w ocenie ryzyka rynkowego
Autor:

Opinie na temat publikacji:


Inne popularne pozycje z tej kategorii:


Czytaj również:


Prowadzisz stronę lub blog? Wstaw link do fragmentu tej książki i współpracuj z Cyfroteką: